k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用

简介: k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用

@TOC


前言

有任何疑问或不懂的地方均可评论或私信,欢迎交流

HPA简介

简单理解

HAP,全称 Horizontal Pod Autoscaler

简单来说就是根据指标来对pod副本数量进行自动控制
比如说cpu和内存使用率

HPA 定期检查内存和 CPU
使用率高就会自动创建多个副本(上限取决于自定义的数量)
使用率低就会关闭多个副本(下限取决于自定义的数量)

实际生产中,广泛使用这四类指标:
1、Resource metrics - CPU和内存利用率指标
2、Pod metrics - 例如网络利用率和流量
3、Object metrics - 特定对象的指标,比如Ingress, 可以按每秒使用请求数来扩展容器
4、Custom metrics - 自定义监控,比如通过定义服务响应时间,当响应时间达到一定指标时自动扩容


详细解释

在 Kubernetes (k8s) 中,HPA 指的是 Horizontal Pod Autoscaler(水平 Pod 自动伸缩)。这是 Kubernetes 中用于自动调整 Pod 副本数量的机制,以应对负载的变化,确保应用程序的高可用性和资源的有效利用。


HPA 的工作原理

监控指标
HPA 通过 Kubernetes Metrics Server 或者其他自定义的指标(如 Prometheus),定期获取当前的负载情况。常见的指标包括 CPU 使用率、内存使用率、自定义指标(例如 QPS,查询每秒)等。

调整策略
根据定义的策略,HPA 会判断是否需要增加或减少 Pod 的数量。例如,如果 CPU 使用率超过预设的阈值,HPA 会增加 Pod 的数量;如果 CPU 使用率低于预设的阈值,HPA 会减少 Pod 的数量。


监控系统

HPA 依赖于监控系统提供的指标数据,常见的监控系统包括:

Kubernetes Metrics Server
提供基础的 CPU 和内存使用率数据。

Prometheus
一个更强大的监控系统,可以自定义多种指标,并与 Kubernetes 集成。

Datadog、New Relic 等第三方监控工具
可以提供更详细的应用监控数据。


负载模式

根据应用的负载模式配置 HPA 的策略:

周期性负载
如果应用负载有明显的周期性变化(如电商网站的流量在白天和晚上波动),可以根据历史数据调整 HPA 策略。

突发负载
对于突发性负载(如新闻网站在重大事件发生时流量激增),需要配置更灵活的伸缩策略,以快速响应负载变化。

持续增长负载
对于持续增长的负载(如新产品发布后的用户增长),需要确保 HPA 能够持续扩展并保持应用性能。

HPA 的优势

自动化伸缩
根据负载自动调整 Pod 数量,确保应用在高负载下能够提供足够的计算资源,而在低负载下又不浪费资源。

高可用性
通过及时增加 Pod 数量,防止应用因为资源不足而出现性能问题。

节约成本
通过在低负载时减少 Pod 数量,节省资源和成本。


使用 HPA 的注意事项

监控数据源
确保 Metrics Server 或者其他指标数据源的稳定性和准确性,否则 HPA 的调整可能不准确。

冷启动时间
在负载激增时,新增的 Pod 可能需要一些时间启动,应用需要考虑这一点,避免在短时间内出现资源不足的情况。

阈值设置
合理设置指标阈值,避免频繁的伸缩操作,造成系统的不稳定。


应用类型

HPA 适用于以下类型的应用:

Web 应用
具有高并发请求特点的应用,可以通过 HPA 在流量高峰时增加 Pod 数量,保证响应速度。

后台处理服务
如数据处理、消息队列消费者等,根据任务队列的长度或处理速度进行伸缩。

微服务架构
每个服务可以独立伸缩,HPA 可以根据每个服务的负载情况动态调整 Pod 数量

应用

虚拟机

环境

Ip 主机名 cpu 内存 硬盘
192.168.10.11 master01 2cpu双核 4G 100G
192.168.10.12 worker01 2cpu双核 4G 100G
192.168.10.13 worker02 2cpu双核 4G 100G

版本 centos7.9
已部署k8s-1.27

1.metircs-server部署

master上操作

wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability-1.21+.yaml

kubelet 证书需要由集群证书颁发机构签名

(或者通过向 Metrics Server 传递参数 --kubelet-insecure-tls 来禁用证书验证)。

更改文件

vim high-availability-1.21+.yaml

149行添加
image.png

解释
因为是虚拟机环境,这条命令是允许 kubelet 使用不安全的 TLS 连接,生产环境不建议使用,这里是便于快速部署和测试已看到效果。

kubectl apply -f high-availability-1.21+.yaml 
watch kubectl get pods -n kube-system

耐心等待,如果一直起不来就先删除pod再重启个节点docker。
image.png

kubectl top nodes

image.png

kubectl top pods -n kube-system

image.png

这里就部署好了,让我们来演示一下

2.HPA演示示例

(1)部署一个服务

mkdir hpa
cd hpa/
vim 01-nginx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: nginx
  name: nginx
  namespace: default
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:latest
        imagePullPolicy: IfNotPresent
        resources:
          requests:
            cpu: 200m
            memory: 100Mi
---
apiVersion: v1
kind: Service
metadata:
  name: nginx
  namespace: default
spec:
  type: NodePort
  ports:
  - port: 80
    targetPort: 80
  selector:
    app: nginx
kubectl apply -f 01-nginx.yaml 
kubectl get pods

如果没有镜像可能会慢点,耐心等待即可
image.png

这是不是报错,是再重新拉取镜像,再耐心等待一下即可

好了
image.png

(2)创建HPA对象

这是一个 HorizontalPodAutoscaler (HPA) 对象的配置,它将控制 Deployment "nginx" 的副本数量。当 CPU 使用率超过 50% 时,HPA 将自动增加 Pod 的副本数量,最高不超过 10 个。

vim 02-nginx-hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: nginx-hpa
  namespace: default
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: nginx
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50
kubectl apply -f 02-nginx-hpa.yaml 
kubectl get hpa

image.png

(3)执行压测

下载工具,查看服务ip

 yum -y install httpd-tools
  kubectl get svc

image.png

ab -c 1000 -n 100000000000 http://192.168.10.11:32435/

打开另一个终端查看
可以看到正在增加

kubectl get hpa

image.png

image.png

可以看到再不断变多

kubectl get hpa

指标会越来越小
image.png

image.png

10个是因为最高设置的10个

压力测试停止一段时间后查看

kubectl get pods

pod会越来越少
直到设置的最小数量
image.png

kubectl get hpa

image.png

大约5分钟以后

kubectl get hpa
kubectl get pods

image.png

image.png

可以看到pod数量已经到设置最小数量

至此
完成

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
1天前
|
Kubernetes 持续交付 开发工具
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
|
19天前
|
Kubernetes 应用服务中间件 nginx
【赵渝强老师】K8s中Pod探针的TCPSocketAction
在K8s集群中,kubelet通过探针(如livenessProbe、readinessProbe和startupProbe)检查容器健康状态。探针支持HTTPGetAction、ExecAction和TCPSocketAction三种检查方法。本文重点介绍TCPSocketAction,它通过尝试建立TCP连接来检测容器的健康状况。示例中创建了一个Nginx Pod,并配置了两个探针(readinessProbe和livenessProbe),它们每隔5秒检查一次容器的8080端口,首次检查在启动后10秒进行。若连接失败,容器将重启。视频讲解和命令演示进一步详细说明了这一过程。
153 83
|
22天前
|
Kubernetes 网络协议 Shell
【赵渝强老师】K8s中Pod探针的ExecAction
在K8s集群中,kubelet通过三种探针(存活、就绪、启动)检查容器健康状态,支持HTTPGet、Exec和TCP检查方式。本文重点介绍ExecAction探针,通过在容器内执行Shell命令返回码判断健康状态,并附带视频讲解和实例演示,展示如何配置和使用ExecAction探针进行健康检查。
58 10
|
27天前
|
Kubernetes 应用服务中间件 nginx
【赵渝强老师】K8s中Pod探针的HTTPGetAction
在K8s集群中,kubelet通过探针(如livenessProbe、readinessProbe和startupProbe)检查容器健康状态。HTTPGetAction通过HTTP请求检查容器健康,返回状态码在200-400区间视为成功。示例中创建了基于Nginx镜像的Pod,并配置存活探针,每5秒检测一次。通过命令操作验证探针功能,展示了Pod的健康检查机制。 视频讲解:[Bilibili](https://www.bilibili.com/video/BV1DTtueTEMM)
48 15
|
29天前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
117 21
|
30天前
|
Kubernetes 容器 Perl
【赵渝强老师】Kubernetes中Pod的探针
在K8s集群中,kubelet通过三种探针(存活、就绪、启动)检查Pod容器的健康状态。存活探针确保容器运行,失败则重启;就绪探针确保容器准备好服务,失败则从Service中剔除;启动探针确保应用已启动,失败则重启容器。视频讲解和图片详细介绍了这三种探针及其检查方法(HTTPGet、Exec、TCPSocket)。
【赵渝强老师】Kubernetes中Pod的探针
|
1月前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
Kubernetes 容器
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(五)
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(五)
172 0
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(五)
|
Kubernetes 容器
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(四)
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(四)
145 0
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(四)
|
Kubernetes 应用服务中间件 API
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(二)
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(二)
165 0
KUBERNETES03_k8s对象是什么、如何管理、命名空间、代码自动补全提示(二)

热门文章

最新文章