【PyTorch】cuda()与to(device)的区别

简介: 【PyTorch】cuda()与to(device)的区别

问题

PyTorch中的Tensor要想在GPU中运行,可以有两种实现方式,其一是x.cuda(),其二是x.to(device)。两种方式均能实现GPU上运行,那么二者的区别是什么呢?

方法

import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
a = torch.randn([3, 224, 224])
# (1) cuda()方式代码扩展性差,如果机器不支持GPU,则需要修改代码后才能在CPU上运行;
a.cuda()
# (2) to(device)方式代码扩展性好,即使没有GPU,也可以运行代码,不用做任何修改;
a.to(device)

结语

推荐使用to(device)的方式,主要原因在于这样的编程方式更加易于扩展,而cuda()必须要求机器有GPU,否则需要修改所有代码,to(device)的方式则不受此限制,device既可以是CPU也可以是GPU;


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
14
分享
相关文章
百度搜索:蓝易云【Pytorch和CUDA版本对应关系】
请注意,上述版本对应关系只是示例,并非详尽无遗。实际上,PyTorch的每个版本通常会支持多个CUDA版本,而具体支持的CUDA版本也可能因操作系统、硬件配置等因素而有所不同。因此,在使用PyTorch时,建议参考PyTorch官方文档或社区支持的信息,以获取最准确和最新的PyTorch与CUDA版本对应关系。
227 2
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
8337 3
Windows下CUDA+pytorch安装
以下是关于在Windows下安装CUDA和PyTorch的简要介绍及参考链接:
103 0
Windows下CUDA+pytorch安装
PyTorch 中的动态图与静态图:理解它们的区别及其应用场景
【8月更文第29天】深度学习框架中的计算图是构建和训练神经网络的基础。PyTorch 支持两种类型的计算图:动态图和静态图。本文旨在阐述这两种计算图的区别、各自的优缺点以及它们在不同场景下的应用。
1672 0
Ubuntu下CUDA、Conda、Pytorch联合教程
本文是一份Ubuntu系统下安装和配置CUDA、Conda和Pytorch的教程,涵盖了查看显卡驱动、下载安装CUDA、添加环境变量、卸载CUDA、Anaconda的下载安装、环境管理以及Pytorch的安装和验证等步骤。
1313 1
Ubuntu下CUDA、Conda、Pytorch联合教程
Ubuntu18 服务器 更新升级CUDA版本 pyenv nvidia ubuntu1804 原11.2升级到PyTorch要求12.1 全过程详细记录 apt update
Ubuntu18 服务器 更新升级CUDA版本 pyenv nvidia ubuntu1804 原11.2升级到PyTorch要求12.1 全过程详细记录 apt update
232 0
PyTorch与CUDA:加速深度学习模型训练的最佳实践
【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。
625 1
【深度学习】Pytorch面试题:什么是 PyTorch?PyTorch 的基本要素是什么?Conv1d、Conv2d 和 Conv3d 有什么区别?
关于PyTorch面试题的总结,包括PyTorch的定义、基本要素、张量概念、抽象级别、张量与矩阵的区别、不同损失函数的作用以及Conv1d、Conv2d和Conv3d的区别和反向传播的解释。
472 2

热门文章

最新文章