基于DCT变换和ZigZag的图像压缩算法matlab性能仿真,仿真输出不同压缩率与图像质量的关系

简介: 基于DCT变换和ZigZag的图像压缩算法matlab性能仿真,仿真输出不同压缩率与图像质量的关系

1.算法仿真效果
matlab2022a仿真结果如下:

13753b76f25125e3d5fa4341e20512d2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
图像压缩是一种广泛应用的技术,它能够在不影响图像质量的前提下,减少图像所占用的存储空间。本文将介绍一种基于离散余弦变换(Discrete Cosine Transform,简称DCT)和ZigZag扫描的图像压缩算法,并探讨不同压缩率与图像质量的关系。

离散余弦变换(DCT)
离散余弦变换(DCT)是一种线性变换,具有良好的能量聚集性能。在图像压缩领域,DCT用于将图像数据从空间域转换到频率域。具体来说,DCT将图像中每个像素的强度值转换为一组系数,这组系数表示图像的频率特征。
ZigZag扫描
为了进一步压缩DCT变换后的系数,通常需要对系数进行量化。量化是一种有损压缩过程,它将连续的系数值映射到离散的集合中。在量化过程中,高频系数(表示图像细节信息)的精度通常会降低,而低频系数(表示图像大致结构)的精度保持相对较高。

  在量化之后,还需要对系数进行重新排列以提高压缩效果。ZigZag扫描是一种常用的重新排列方法,它按照对角线的顺序遍历DCT系数矩阵。ZigZag扫描的目的是将系数按照能量从高到低的顺序排列,以便后续的编码过程能够更好地利用系数之间的相关性。

压缩过程
基于DCT变换和ZigZag扫描的图像压缩算法可以分为以下几个步骤:

将输入图像分割成8x8的小块;
对每个8x8的小块应用离散余弦变换(DCT);
对DCT变换后的系数进行量化;
使用ZigZag扫描对量化后的系数进行重新排列;
应用熵编码(例如哈夫曼编码)对重新排列后的系数进行编码;
将编码后的数据存储为压缩文件。
不同压缩率与图像质量的关系
在基于DCT变换和ZigZag扫描的图像压缩算法中,压缩率主要受量化过程的影响。量化表是量化过程中的关键参数,它定义了量化的精度。量化表中的每个元素对应于一个DCT系数,其值表示该系数的量化步长。通过调整量化表中的元素值,可以实现不同的压缩率。具体来说,增大量化表中的值将导致更高的压缩率,但同时也会降低图像质量;降低量化表中的值将导致更低的压缩率,但可以保持较高的图像质量。

  当压缩率较低时,量化过程对图像质量的影响较小,因此压缩后的图像与原始图像相似度较高。但随着压缩率的增加,量化过程对高频系数(表示图像细节信息)的损失会更加严重,导致图像质量下降。在极端情况下,高压缩率可能导致图像失去大部分细节信息,仅保留大致的结构。

   为了定量衡量压缩后的图像质量,可以使用诸如峰值信噪比(Peak Signal-to-Noise Ratio,简称PSNR)和结构相似性指数(Structural Similarity Index,简称SSIM)等指标。PSNR是一种基于像素值误差的指标,它衡量了压缩后的图像与原始图像之间的差异程度。SSIM则是一种基于图像结构的指标,它度量了压缩后的图像在结构、亮度和对比度等方面与原始图像的相似性。

  在实际应用中,不同压缩率与图像质量的权衡取决于具体的需求。例如,在对存储空间要求较高的场景下,可以接受较高的压缩率以节省存储空间;而在对图像质量要求较高的场景下,应选择较低的压缩率以保证图像质量。

3.MATLAB核心程序


%'区间[0,1]中图像的归一化

RGB=双(I)/255;

%颜色空间转换

YCbCr=rgb2ycbcr(RGB);



Y=YCbCr(:,:,1);

Cb=YCbCr(:,:,2);

Cr=YCbCr(:,:,3);



D_Y=dct2(Y);%DCT变换-Y通道
D_Cb=dct2(Cb);%DCT变换-Cb通道
D_Cr=dct2(Cr);%DCT变换-Cr通道



sc=0.5;%比例因子
D_Y_log=sc*log10(1+abs(D_Y));
[fx,fy]=频率空间(大小(D_Y));




sc=0.5;%比例因子
D_Cb_log=sc*log10(1+abs(D_Cb));
[fx,fy]=频率空间(大小(D_Cb));
%图(5),网格(fx,fy,D_Cb_log);


sc=0.5;%比例因子
D_Cr_log=sc*log10(1+abs(D_Cr));
[fx,fy]=频率空间(大小(D_Cr));


[r,c]=尺寸(Y);
rc=最小值(r,c);
m_Y=fliplr(triu(一个(r,c),圆(c-d_Y*rc));


D_Y_掩码=D_Y.*m_Y;
m_C=fliplr(triu(ones(r,C),round(C-d_C*rc));

D_Cb_mask=D_Cb.*m_C;%Cb通道上的掩模应用
D_Cr_mask=D_Cr.*m_C;%Cr通道上的掩模应用
a1(:,:,1)=D_Y_掩码;%在矩阵列中放置遮罩
a1(:,:,2)=D_Cb_mask;
a1(:,:,3)=D_Cr_mask;
c1=nnz(a1);
相关文章
|
2天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
116 85
|
1天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
1天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
11天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。