【误码率仿真】基于matlab模拟16QAM和16PSK调制误码率对比附GUI界面

简介: 【误码率仿真】基于matlab模拟16QAM和16PSK调制误码率对比附GUI界面

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

调制作为通信系统组成必不可缺的一部分,主要用于将基带信号进行一定的处理加到载波上,使其变为适合于信道传输的形式.传统的调制分为调幅,调频,调相3种方式,在数字通信系统中,采用16PSK调制和QAM调制较多,文章通过通信系统中常用的MATLAB仿真软件,选取16PSK调制和16QAM调制方式,通过对其星座图以及误码率进行对比仿真,得出两种调制方式的优缺点。

16PSK调制和16QAM调制是两种常用的调制技术,用于将数字数据转换为模拟信号以进行无线通信。

  1. 16PSK(16相位偏移键控)调制:
  • 16PSK使用16个不同的相位来表示4比特的数据。
  • 每个相位之间的相位偏移为22.5度。
  • 由于相位的离散性,16PSK在信号传输的过程中相对较容易受到相位偏移、多径衰落等干扰的影响。
  1. 16QAM(16方振幅调制)调制:
  • 16QAM使用16个不同的幅度和相位组合来表示4比特的数据。
  • 信号空间包含4个幅度级别和4个相位级别。
  • 16QAM在相同频带宽度下能够传输更高的比特速率,但也更容易受到噪声和信道失真的影响。

无论是16PSK还是16QAM,它们都具有一定的优势和适用性。16PSK可以提供较好的相位鲁棒性,适用于对相位变化较为敏感的应用。16AM则在相对较低的信噪比条件下能够提供较高的数据传输速率。

⛄ 运行结果

⛄ 部分代码

function varargout = compare_psk_qam(varargin)

% COMPARE_PSK_QAM MATLAB code for compare_psk_qam.fig

%      COMPARE_PSK_QAM, by itself, creates a new COMPARE_PSK_QAM or raises the existing

%      singleton*.

%

%      H = COMPARE_PSK_QAM returns the handle to a new COMPARE_PSK_QAM or the handle to

%      the existing singleton*.

%

%      COMPARE_PSK_QAM('CALLBACK',hObject,eventData,handles,...) calls the local

%      function named CALLBACK in COMPARE_PSK_QAM.M with the given input arguments.

%

%      COMPARE_PSK_QAM('Property','Value',...) creates a new COMPARE_PSK_QAM or raises the

%      existing singleton*.  Starting from the left, property value pairs are

%      applied to the GUI before compare_psk_qam_OpeningFcn gets called.  An

%      unrecognized property name or invalid value makes property application

%      stop.  All inputs are passed to compare_psk_qam_OpeningFcn via varargin.

%

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one

%      instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES


% Edit the above text to modify the response to help compare_psk_qam


% Last Modified by GUIDE v2.5 16-May-2023 15:52:23


% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name',       mfilename, ...

                  'gui_Singleton',  gui_Singleton, ...

                  'gui_OpeningFcn', @compare_psk_qam_OpeningFcn, ...

                  'gui_OutputFcn',  @compare_psk_qam_OutputFcn, ...

                  'gui_LayoutFcn',  [] , ...

                  'gui_Callback',   []);

if nargin && ischar(varargin{1})

   gui_State.gui_Callback = str2func(varargin{1});

end


if nargout

   [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

   gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT



% --- Executes just before compare_psk_qam is made visible.

function compare_psk_qam_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject    handle to figure

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)

% varargin   command line arguments to compare_psk_qam (see VARARGIN)


% Choose default command line output for compare_psk_qam

handles.output = hObject;


% Update handles structure

guidata(hObject, handles);


% UIWAIT makes compare_psk_qam wait for user response (see UIRESUME)

% uiwait(handles.figure1);



% --- Outputs from this function are returned to the command line.

function varargout = compare_psk_qam_OutputFcn(hObject, eventdata, handles)

% varargout  cell array for returning output args (see VARARGOUT);

% hObject    handle to figure

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


% Get default command line output from handles structure

varargout{1} = handles.output;




%鐢熸垚浜岃繘鍒朵俊鎭爜鍏冨簭鍒?

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject    handle to pushbutton1 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


M=4;

Num_symbol = 1000000;

Num_bit =M*Num_symbol;

Bit = randi([0,1],Num_bit,1);


axes(handles.axes2);

⛄ 参考文献

[1] 刘卓伦,马征.基于Matlab平台的OFDM系统在不同信道下16QAM调制的仿真设计与分析[J].信息记录材料, 2017(12).DOI:CNKI:SUN:CXJL.0.2017-12-007.

[2] 赵忠华,杨晓梅.GMSK调制解调的MATLAB仿真与误码率分析[J].新疆师范大学学报:自然科学版, 2015, 34(2):6.DOI:10.3969/j.issn.1008-9659.2015.02.013.

[3] 谭清元,潘学文.QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现[J].电脑知识与技术:学术版, 2019, 15(12):2.

[4] 王怡,涂宇,谭泽涛,等.基于Simulink的16QAM调制解调系统的设计与仿真[J].电子技术与软件工程, 2020(17):2.

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章