m基于FPGA的FOC控制器verilog实现,包括CLARK,PARK,PID及SVPWM,含testbench

简介: m基于FPGA的FOC控制器verilog实现,包括CLARK,PARK,PID及SVPWM,含testbench

1.算法仿真效果
Quartus II 12.1(64-Bit)

ModelSim-Altera 6.6d Starter Edition

仿真结果如下:

db2619ef5690aa1ed23e1c8f70e03b00_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
ac32b4b1c1561e5d3140e71d149e6327_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
整个系统的结构如下所示:

a56d15e3137b53891a0ef80fb160faf7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

1、采集到两相电流

2、经过clarke变换后得到两轴正交电流量,

3、经过旋转变换后得到正交的电流量 Id、Iq,其中Iq与转矩有关,Id与磁通有关。在实际控制中,常将Id置为0。得到的这两个量不是时变的,因此可以单独的对这两个量进行控制,类似直流量控制一样。而不需要知道具体要给电机三相具体的电压为多少。

4、将第3步中得到的Iq与Id量分别送进PI调节器,得到对应的输出Vq和Vd;

5、通过传感器得到电机转过的角度。

6、进行逆park变换,得到二轴电流量。

7、对第6步中的Va,Vb进行逆clarke变换,得到实际需要的三相电压输入给逆变电桥,驱动电机转动。

   FOC控制的其实是电机的电磁场方向。转子的转子力矩正比于定子的磁场向量与转子磁场矢量的矢量积。由矢量的关系可知,若使电机的转矩时刻保持最大,则定子磁场向量应与转子磁场向量相互垂直。又因为磁场的大小与方向与电流的大小与方向有着直接的关系,所以在用FOC控制算法控制BLDC时的关键就是控制三相输入的电流大小与方向。而控制电流产生定子磁场与转子磁场垂直的关键在:控制稳定的三相输入电压及其电流向量,并且我们得知道转子的实时位置。

   输入电流的方向控制,FOC给出了空间电流矢量的概念。其实质是将三相的电流矢量结合,再分解为垂直和平行于转子磁体轴方向的两个分量即d-q结构。垂直方向的电流分量所产生磁场正交于转子的磁场,这就产生了旋转力矩。而平行于转子磁轴方向的电流分量,所产生的磁场与转子磁场一致,就不会产生任何的力矩。另外,一个好的控制算法就需要使这个平行于转子磁轴方向的电流分量尽量最小化,因为,这个电流分量只会使电机产生多余的热量,并加剧轴承的磨损。我们需要控制线圈的电流,以使垂直于转子磁轴方向的电流分量达到最大。由此而得到的电机力矩和这个电流分量的大小成比例。

3.Verilog核心程序
```PID_tops PID_tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_kp (16'b0001_1111_1111_1111),
.i_ki (16'b0000_0000_0010_0011),
.i_kd (16'b0000_0000_0000_0001),
.i_din (err1),
.o_dout (o_pid_dout),
//test port
.o_doutp (),
.o_douti (),
.o_doutd ()
);

wire signed[15:0]o_Id;
wire signed[15:0]o_Iq;
wire signed[15:0]err11;
wire signed[15:0]err12;
assign err11 = o_pid_dout-o_Id;
assign err12 = 0-o_Iq;
wire signed[15:0]o_pid_dout1;
wire signed[15:0]o_pid_dout2;
PID_tops PID_tops_u1(
.i_clk (i_clk),
.i_rst (i_rst),
.i_kp (16'b0001_1111_1111_1111),
.i_ki (16'b0000_0000_0010_0011),
.i_kd (16'b0000_0000_0000_0001),
.i_din (err11),
.o_dout (o_pid_dout1),
//test port
.o_doutp (),
.o_douti (),
.o_doutd ()
);

PID_tops PID_tops_u2(
.i_clk (i_clk),
.i_rst (i_rst),
.i_kp (16'b0001_1111_1111_1111),
.i_ki (16'b0000_0000_0010_0011),
.i_kd (16'b0000_0000_0000_0001),
.i_din (err12),
.o_dout (o_pid_dout2),
//test port
.o_doutp (),
.o_douti (),
.o_doutd ()
);
//
//INV PARK
wire signed[15:0]o_Uaref;
wire signed[15:0]o_Ubref;
INVPARK INVPARK_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_D (o_pid_dout1),
.i_Q (o_pid_dout2),
.i_theta (o_theta),
.o_alpha (o_Uaref),
.o_beta (o_Ubref)
);

//
//SVPWM
wire w_PWM1;
wire w_PWM2;
wire w_PWM3;
wire w_PWM4;
wire w_PWM5;
wire w_PWM6;
SVPWM SVPWM_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_Uaref(o_Uaref),
.i_Ubref(o_Ubref),
.o_PWM1 (w_PWM1),
.o_PWM2 (w_PWM2),
.o_PWM3 (w_PWM3),
.o_PWM4 (w_PWM4),
.o_PWM5 (w_PWM5),
.o_PWM6 (w_PWM6)
);
//
//IGBT+PMSM
IGBT_PMSM_simple IGBT_PMSM_simple_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_PWM1 (w_PWM1),
.i_PWM2 (w_PWM2),
.i_PWM3 (w_PWM3),
.i_PWM4 (w_PWM4),
.i_PWM5 (w_PWM5),
.i_PWM6 (w_PWM6),
.i_pid (o_pid_dout),
.i_Te (16'd100),
.o_Ia (o_Ia),
.o_Ib (o_Ib),
.o_Ic (o_Ic),
.o_Te (o_Te),
.o_Wm (o_Wm),
.o_theta(o_theta)
);

//
//CLARK
CLARK CLARK_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_Ia (o_Ia),
.i_Ib (o_Ib),
.o_Id (o_Ialpha),
.o_Iq (o_Ibeta)
);

//
//PARK
PARK PARK_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_d (o_Ialpha),
.i_q (o_Ibeta),
.i_theta (o_theta),
.o_ID (o_Id),
.o_IQ (o_Iq)
);

endmodule
```

相关文章
|
7天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的信号发生器verilog实现,可以输出方波,脉冲波,m序列以及正弦波,可调整输出信号频率
本项目基于Vivado2019.2实现信号发生器,可输出方波、脉冲波、m随机序列和正弦波。完整程序无水印,含详细中文注释与操作视频。FPGA技术使信号发生器精度高、稳定性强、功能多样,适用于电子工程、通信等领域。方波、脉冲波、m序列及正弦波的生成原理分别介绍,代码核心部分展示。
|
28天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
135 69
|
1月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
68 26
|
2月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
68 8
|
2月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
69 11
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
52 1
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
64 4
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
68 3
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
49 0

热门文章

最新文章