人工智能创新挑战赛:海洋气象预测Baseline[4]完整版(TensorFlow、torch版本)含数据转化、模型构建、MLP、TCNN+RNN、LSTM模型训练以及预测

简介: 人工智能创新挑战赛:海洋气象预测Baseline[4]完整版(TensorFlow、torch版本)含数据转化、模型构建、MLP、TCNN+RNN、LSTM模型训练以及预测

人工智能创新挑战赛:海洋气象预测Baseline[4]完整版(TensorFlow、torch版本)含数据转化、模型构建、MLP、TCNN+RNN、LSTM模型训练以及预测

1.赛题简介

项目链接以及码源见文末

2021 “AI Earth” 人工智能创新挑战赛,以 “AI 助力精准气象和海洋预测” 为主题,旨在探索人工智能技术在气象和海洋领域的应用。

本赛题的背景是厄尔尼诺 - 南方涛动(ENSO)现象。ENSO现象是厄尔尼诺(EN)现象和南方涛动(SO)现象的合称,其中厄尔尼诺现象是指赤道中东太平洋附近的海表面温度持续异常增暖的现象,南方涛动现象是指热带东太平洋与热带西太平洋气压场存在的气压变化相反的跷跷板现象。厄尔尼诺现象和南方涛动现象实际是反常气候分别在海洋和大气中的表现,二者密切相关,因此合称为厄尔尼诺 - 南方涛动现象。

ENSO现象会在世界大部分地区引起极端天气,对全球的天气、气候以及粮食产量具有重要的影响,准确预测ENSO,是提高东亚和全球气候预测水平和防灾减灾的关键。Nino3.4指数是ENSO现象监测的一个重要指标,它是指Nino3.4区(170°W - 120°W,5°S - 5°N)的平均海温距平指数,用于反应海表温度异常,若Nino3.4指数连续5个月超过0.5℃就判定为一次ENSO事件。本赛题的目标,就是基于历史气候观测和模式模拟数据,利用T时刻过去12个月(包含T时刻)的时空序列,预测未来1 - 24个月的Nino3.4指数。

Image Name

Image Name

Image Name

基于以上信息可以看出,我们本期的组队学习要完成的是一个时空序列的预测任务。

竞赛题目

数据简介

本赛题使用的训练数据包括CMIP5中17个模式提供的140年的历史模拟数据、CMIP6中15个模式提供的151年的历史模拟数据和美国SODA模式重建的100年的历史观测同化数据,采用nc格式保存,其中CMIP5和CMIP6分别是世界气候研究计划(WCRP)的第5次和第6次耦合模式比较计划,这二者都提供了多种不同的气候模式对于多种气候变量的模拟数据。这些数据包含四种气候变量:海表温度异常(SST)、热含量异常(T300)、纬向风异常(Ua)、经向风异常(Va),数据维度为(year, month, lat, lon),对于训练数据提供对应月份的Nino3.4指数标签数据。简而言之,提供的训练数据中的每个样本为某年、某月、某个维度、某个经度的SST、T300、Ua、Va数值,标签为对应年、对应月的Nino3.4指数。

需要注意的是,样本的第二维度month的长度不是12个月,而是36个月,对应从当前year开始连续三年的数据,例如SODA训练数据中year为0时包含的是从第1 - 第3年逐月的历史观测数据,year为1时包含的是从第2年 - 第4年逐月的历史观测数据,也就是说,样本在时间上是有交叉的。

Image Name

另外一点需要注意的是,Nino3.4指数是Nino3.4区域从当前月开始连续三个月的SST平均值,也就是说,我们也可以不直接预测Nino3.4指数,而是以SST为预测目标,间接求得Nino3.4指数。

测试数据为国际多个海洋资料同化结果提供的随机抽取的$N$段长度为12个月的时间序列,数据采用npy格式保存,维度为(12, lat, lon, 4),第一维度为连续的12个月份,第四维度为4个气候变量,按SST、T300、Ua、Va的顺序存放。测试集文件序列的命名如test_00001_01_12.npy中00001表示编号,01表示起始月份,12表示终止月份。

训练数据说明

每个数据样本第一维度(year)表征数据所对应起始年份,对于CMIP数据共4645年,其中1-2265为CMIP6中15个模式提供的151年的历史模拟数据(总共:151年 15 个模式=2265);2266-4645为CMIP5中17个模式提供的140年的历史模拟数据(总共:140年 17 个模式=2380)。对于历史观测同化数据为美国提供的SODA数据。

其中每个样本第二维度(mouth)表征数据对应的月份,对于训练数据均为36,对应的从当前年份开始连续三年数据(从1月开始,共36月),比如:

SODA_train.nc中[0,0:36,:,:]为第1-第3年逐月的历史观测数据;

SODA_train.nc中[1,0:36,:,:]为第2-第4年逐月的历史观测数据;
…,
SODA_train.nc中[99,0:36,:,:]为第100-102年逐月的历史观测数据。


CMIP_train.nc中[0,0:36,:,:]为CMIP6第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[150,0:36,:,:]为CMIP6第一个模式提供的第151-第153年逐月的历史模拟数据;

CMIP_train.nc中[151,0:36,:,:]为CMIP6第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2265,0:36,:,:]为CMIP5第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2405,0:36,:,:]为CMIP5第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[4644,0:36,:,:]为CMIP5第17个模式提供的第140-第142年逐月的历史模拟数据。

其中每个样本第三、第四维度分别代表经纬度(南纬55度北纬60度,东经0360度),所有数据的经纬度范围相同。

训练数据标签说明

标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。

CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致

注:三个月滑动平均值为当前月与未来两个月的平均值。

测试数据说明

测试用的初始场(输入)数据为国际多个海洋资料同化结果提供的随机抽取的n段12个时间序列,数据格式采用NPY格式保存,维度为(12,lat,lon, 4),12为t时刻及过去11个时刻,4为预测因子,并按照SST,T300,Ua,Va的顺序存放。

测试集文件序列的命名规则:test编号起始月份_终止月份.npy,如test_00001_0112.npy。

评估指标

本赛题的评估指标如下:
$$ Score = \frac{2}{3} \times accskill - RMSE $$
其中$accskill$为相关性技巧评分,计算方式如下:
$$ accskill = \sum_{i=1}^{24} a \times ln(i) \times cor_i \\ (i \leq 4, a = 1.5; 5 \leq i \leq 11, a = 2; 12 \leq i \leq 18, a = 3; 19 \leq i, a = 4) $$
可以看出,月份$i$增加时系数$a$也增大,也就是说,模型能准确预测的时间越长,评分就越高。

$cor_i$是对于$N$个测试集样本在时刻$i$的预测值与实际值的相关系数,计算公式如下:
$$ cor_i = \frac{\sum_{j=1}^N(y_{truej}-\bar{y}_{true})(y_{predj}-\bar{y}_{pred})}{\sqrt{\sum(y_{truej}-\bar{y}_{true})^2\sum(y_{predj}-\bar{y}_{pred})^2}} $$
其中$y_{truej}$为时刻$i$样本$j$的实际Nino3.4指数,$\bar{y}_{true}$为该时刻$N$个测试集样本的Nino3.4指数的均值,$y_{predj}$为时刻$i$样本$j$的预测Nino3.4指数,$\bar{y}_{pred}$为该时刻$N$个测试集样本的预测Nino3.4指数的均值。

$RMSE$为24个月份的累计均方根误差,计算公式为:
$$ RMSE = \sum_{i=1}^{24}rmse_i \\ rmse = \sqrt{\frac{1}{N}\sum_{j=1}^N(y_{truej}-y_{predj})^2} $$

Image Name

赛题分析

分析上述赛题信息可以发现,我们需要解决的是以下问题:

  • 对于一个时空序列预测问题,要如何挖掘时间信息?如何挖掘空间信息?
  • 数据中给出的特征是四个气象领域公认的、通用的气候变量,我们很难再由此构造新的特征。如果不构造新的特征,要如何从给出的特征中挖掘出更多的信息?
  • 训练集的数据量不大,总共只有$140\times17+151\times15+100=4745$个训练样本,对于数据量小的预测问题,我们通常需要从以下两方面考虑:
    • 如何增加数据量?
    • 如何构造小(参数量小,减小过拟合风险)而深(能提取出足够丰富的信息)的模型?

2.线下数据转换

  • 将数据转化为我们所熟悉的形式,每个人的风格不一样,此处可以作为如何将nc文件转化为csv等文件

数据转化

## 工具包导入&数据读取
### 工具包导入

'''
安装工具
# !pip install netCDF4 
''' 
import pandas as pd
import numpy  as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import scipy 
from netCDF4 import Dataset
import netCDF4 as nc
import gc
%matplotlib inline

数据读取

SODA_label处理

  1. 标签含义
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。  
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
  1. 将标签转化为我们熟悉的pandas形式
label_path       = './data/SODA_label.nc'
label_trans_path = './data/' 
nc_label         = Dataset(label_path,'r')

years            = np.array(nc_label['year'][:])
months           = np.array(nc_label['month'][:])

year_month_index = []
vs               = []
for i,year in enumerate(years):
    for j,month in enumerate(months):
        year_month_index.append('year_{}_month_{}'.format(year,month))
        vs.append(np.array(nc_label['nino'][i,j]))

df_SODA_label               = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_SODA_label['year_month'] = year_month_index
df_SODA_label['label']      = vs

df_SODA_label.to_csv(label_trans_path + 'df_SODA_label.csv',index = None)
df_SODA_label.head()






year_month
label




0
year_1_month_1
-0.40720701217651367


1
year_1_month_2
-0.20244435966014862


2
year_1_month_3
-0.10386104136705399


3
year_1_month_4
-0.02910841442644596


4
year_1_month_5
-0.13252995908260345



转化

SODA_train处理

SODA_train.nc中[0,0:36,:,:]为第1-第3年逐月的历史观测数据;

SODA_train.nc中[1,0:36,:,:]为第2-第4年逐月的历史观测数据;
…,
SODA_train.nc中[99,0:36,:,:]为第100-102年逐月的历史观测数据。
SODA_path        = './data/SODA_train.nc'
nc_SODA          = Dataset(SODA_path,'r')
  • 自定义抽取对应数据&转化为df的形式;

index为年月; columns为lat和lon的组合

def trans_df(df, vals, lats, lons, years, months):
    '''
        (100, 36, 24, 72) -- year, month,lat,lon 
    ''' 
    for j,lat_ in enumerate(lats):
        for i,lon_ in enumerate(lons):
            c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_))  
            v = []
            for y in range(len(years)):
                for m in range(len(months)): 
                    v.append(vals[y,m,j,i])
            df[c] = v
    return df
year_month_index = []

years              = np.array(nc_SODA['year'][:])
months             = np.array(nc_SODA['month'][:])
lats             = np.array(nc_SODA['lat'][:])
lons             = np.array(nc_SODA['lon'][:])


for year in years:
    for month in months:
        year_month_index.append('year_{}_month_{}'.format(year,month))

df_sst  = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_t300 = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_ua   = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_va   = pd.DataFrame({
   
   'year_month':year_month_index})
%%time
df_sst = trans_df(df = df_sst, vals = np.array(nc_SODA['sst'][:]), lats = lats, lons = lons, years = years, months = months)
df_t300 = trans_df(df = df_t300, vals = np.array(nc_SODA['t300'][:]), lats = lats, lons = lons, years = years, months = months)
df_ua   = trans_df(df = df_ua, vals = np.array(nc_SODA['ua'][:]), lats = lats, lons = lons, years = years, months = months)
df_va   = trans_df(df = df_va, vals = np.array(nc_SODA['va'][:]), lats = lats, lons = lons, years = years, months = months)
label_trans_path = './data/'
df_sst.to_csv(label_trans_path  + 'df_sst_SODA.csv',index = None)
df_t300.to_csv(label_trans_path + 'df_t300_SODA.csv',index = None)
df_ua.to_csv(label_trans_path   + 'df_ua_SODA.csv',index = None)
df_va.to_csv(label_trans_path   + 'df_va_SODA.csv',index = None)

CMIP_label处理

label_path       = './data/CMIP_label.nc'
label_trans_path = './data/'
nc_label         = Dataset(label_path,'r')

years            = np.array(nc_label['year'][:])
months           = np.array(nc_label['month'][:])

year_month_index = []
vs               = []
for i,year in enumerate(years):
    for j,month in enumerate(months):
        year_month_index.append('year_{}_month_{}'.format(year,month))
        vs.append(np.array(nc_label['nino'][i,j]))

df_CMIP_label               = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_CMIP_label['year_month'] = year_month_index
df_CMIP_label['label']      = vs

df_CMIP_label.to_csv(label_trans_path + 'df_CMIP_label.csv',index = None)
df_CMIP_label.head()






year_month
label




0
year_1_month_1
-0.26102548837661743


1
year_1_month_2
-0.1332537680864334


2
year_1_month_3
-0.014831557869911194


3
year_1_month_4
0.10506672412157059


4
year_1_month_5
0.24070978164672852



CMIP_train处理


CMIP_train.nc中[0,0:36,:,:]为CMIP6第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[150,0:36,:,:]为CMIP6第一个模式提供的第151-第153年逐月的历史模拟数据;

CMIP_train.nc中[151,0:36,:,:]为CMIP6第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2265,0:36,:,:]为CMIP5第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2405,0:36,:,:]为CMIP5第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[4644,0:36,:,:]为CMIP5第17个模式提供的第140-第142年逐月的历史模拟数据。

其中每个样本第三、第四维度分别代表经纬度(南纬55度北纬60度,东经0360度),所有数据的经纬度范围相同。
CMIP_path       = './data/CMIP_train.nc'
CMIP_trans_path = './data'
nc_CMIP  = Dataset(CMIP_path,'r')
nc_CMIP.variables.keys()
dict_keys(['sst', 't300', 'ua', 'va', 'year', 'month', 'lat', 'lon'])
nc_CMIP['t300'][:].shape
(4645, 36, 24, 72)
year_month_index = []

years              = np.array(nc_CMIP['year'][:])
months             = np.array(nc_CMIP['month'][:])
lats               = np.array(nc_CMIP['lat'][:])
lons               = np.array(nc_CMIP['lon'][:])

last_thre_years = 1000
for year in years:
    '''
        数据的原因,我们
    '''
    if year >= 4645 - last_thre_years:
        for month in months:
            year_month_index.append('year_{}_month_{}'.format(year,month))

df_CMIP_sst  = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_CMIP_t300 = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_CMIP_ua   = pd.DataFrame({
   
   'year_month':year_month_index}) 
df_CMIP_va   = pd.DataFrame({
   
   'year_month':year_month_index})
  • 因为内存限制,我们暂时取最后1000个year的数据
def trans_thre_df(df, vals, lats, lons, years, months, last_thre_years = 1000):
    '''
        (4645, 36, 24, 72) -- year, month,lat,lon 
    ''' 
    for j,lat_ in (enumerate(lats)):
#         print(j)
        for i,lon_ in enumerate(lons):
            c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_))  
            v = []
            for y_,y in enumerate(years):
                '''
                    数据的原因,我们
                '''
                if y >= 4645 - last_thre_years:
                    for m_,m in  enumerate(months): 
                        v.append(vals[y_,m_,j,i])
            df[c] = v
    return df
%%time
df_CMIP_sst  = trans_thre_df(df = df_CMIP_sst,  vals   = np.array(nc_CMIP['sst'][:]),  lats = lats, lons = lons, years = years, months = months)
df_CMIP_sst.to_csv(CMIP_trans_path + 'df_CMIP_sst.csv',index = None)
del df_CMIP_sst
gc.collect()

df_CMIP_t300 = trans_thre_df(df = df_CMIP_t300, vals   = np.array(nc_CMIP['t300'][:]), lats = lats, lons = lons, years = years, months = months)
df_CMIP_t300.to_csv(CMIP_trans_path + 'df_CMIP_t300.csv',index = None)
del df_CMIP_t300
gc.collect()

df_CMIP_ua   = trans_thre_df(df = df_CMIP_ua,   vals   = np.array(nc_CMIP['ua'][:]),   lats = lats, lons = lons, years = years, months = months)
df_CMIP_ua.to_csv(CMIP_trans_path + 'df_CMIP_ua.csv',index = None)
del df_CMIP_ua
gc.collect()

df_CMIP_va   = trans_thre_df(df = df_CMIP_va,   vals   = np.array(nc_CMIP['va'][:]),   lats = lats, lons = lons, years = years, months = months)
df_CMIP_va.to_csv(CMIP_trans_path + 'df_CMIP_va.csv',index = None)
del df_CMIP_va
gc.collect()
(36036, 1729)

3.数据建模

工具包导入&数据读取

工具包导入

import pandas as pd
import numpy  as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam 
import joblib
from netCDF4 import Dataset
import netCDF4 as nc
import gc
from   sklearn.metrics import mean_squared_error
import numpy as np
from tensorflow.keras.callbacks import LearningRateScheduler, Callback
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.layers import Input 
%matplotlib inline

数据读取

SODA_label处理

  1. 标签含义
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。  
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
  1. 将标签转化为我们熟悉的pandas形式
df_SODA_label = pd.read_csv('./data/df_SODA_label.csv')
df_CMIP_label = pd.read_csv('./data/df_CMIP_label.csv')

训练集验证集构建

df_SODA_label['year']  = df_SODA_label['year_month'].apply(lambda x: x[:x.find('m') - 1])
df_SODA_label['month'] = df_SODA_label['year_month'].apply(lambda x: x[x.find('m') :])

df_train = pd.pivot_table(data = df_SODA_label, values = 'label',index = 'year', columns = 'month')
year_new_index    = ['year_{}'.format(i+1)  for i in range(df_train.shape[0])]
month_new_columns = ['month_{}'.format(i+1) for i in range(df_train.shape[1])]
df_train = df_train[month_new_columns].loc[year_new_index]

模型构建

MLP框架

def RMSE(y_true, y_pred):
    return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))

def RMSE_fn(y_true, y_pred):
    return np.sqrt(np.mean(np.power(np.array(y_true, float).reshape(-1, 1) - np.array(y_pred, float).reshape(-1, 1), 2)))

def build_model(train_feat, test_feat): #allfeatures, 
    inp    = Input(shape=(len(train_feat)))  

    x = Dense(1024, activation='relu')(inp)  
    x = Dropout(0.25)(x) 
    x = Dense(512, activation='relu')(x)   
    x = Dropout(0.25)(x)  
    output = Dense(len(test_feat), activation='linear')(x)   
    model  = Model(inputs=inp, outputs=output)

    adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99) 
    model.compile(optimizer=adam, loss=RMSE)

    return model

模型训练

feature_cols = ['month_{}'.format(i+1) for i in range(12)]
label_cols   = ['month_{}'.format(i+1) for i in range(12, df_train.shape[1])]
model_mlp = build_model(feature_cols, label_cols)
model_mlp.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 12)]              0         
_________________________________________________________________
dense (Dense)                (None, 1024)              13312     
_________________________________________________________________
dropout (Dropout)            (None, 1024)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 512)               524800    
_________________________________________________________________
dropout_1 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 24)                12312     
=================================================================
Total params: 550,424
Trainable params: 550,424
Non-trainable params: 0
_________________________________________________________________
tr_len = int(df_train.shape[0] * 0.8)
tr_fea     = df_train[feature_cols].iloc[:tr_len,:].copy()
tr_label   = df_train[label_cols].iloc[:tr_len,:].copy()

val_fea     = df_train[feature_cols].iloc[tr_len:,:].copy()
val_label   = df_train[label_cols].iloc[tr_len:,:].copy() 


model_weights = './user_data/model_data/model_mlp_baseline.h5'

checkpoint = ModelCheckpoint(model_weights, monitor='val_loss', verbose=0, save_best_only=True, mode='min',
                             save_weights_only=True)

plateau        = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, verbose=1, min_delta=1e-4, mode='min')
early_stopping = EarlyStopping(monitor="val_loss", patience=20)
history        = model_mlp.fit(tr_fea.values, tr_label.values,
                    validation_data=(val_fea.values, val_label.values),
                    batch_size=4096, epochs=200,
                    callbacks=[plateau, checkpoint, early_stopping],
                    verbose=2)
Epoch 00053: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
1/1 - 0s - loss: 0.6567 - val_loss: 0.6030
Epoch 54/200
1/1 - 0s - loss: 0.6571 - val_loss: 0.6030
Epoch 55/200
1/1 - 0s - loss: 0.6541 - val_loss: 0.6030
Epoch 56/200
1/1 - 0s - loss: 0.6539 - val_loss: 0.6030
Epoch 57/200
1/1 - 0s - loss: 0.6477 - val_loss: 0.6030
Epoch 58/200

Epoch 00058: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.
1/1 - 0s - loss: 0.6498 - val_loss: 0.6029
Epoch 59/200
1/1 - 0s - loss: 0.6451 - val_loss: 0.6029
Epoch 60/200
1/1 - 0s - loss: 0.6458 - val_loss: 0.6029

Metrics

def rmse(y_true, y_preds):
    return np.sqrt(mean_squared_error(y_pred = y_preds, y_true = y_true))

def score(y_true, y_preds):
    accskill_score = 0
    rmse_score     = 0
    a = [1.5] * 4 + [2] * 7 + [3] * 7 + [4] * 6
    y_true_mean = np.mean(y_true,axis=0) 
    y_pred_mean = np.mean(y_true,axis=0)

    for i in range(24): 
        fenzi = np.sum((y_true[:,i] -  y_true_mean[i]) *(y_preds[:,i] -  y_pred_mean[i]) ) 
        fenmu = np.sqrt(np.sum((y_true[:,i] -  y_true_mean[i])**2) * np.sum((y_preds[:,i] -  y_pred_mean[i])**2) ) 
        cor_i= fenzi / fenmu

        accskill_score += a[i] * np.log(i+1) * cor_i

        rmse_score += rmse(y_true[:,i], y_preds[:,i]) 
    return  2 / 3.0 * accskill_score - rmse_score
y_val_preds = model_mlp.predict(val_fea.values, batch_size=1024)
print('score', score(y_true = val_label.values, y_preds = y_val_preds))

4.模型预测

模型构建

在上面的部分,我们已经训练好了模型,接下来就是提交模型并在线上进行预测,这块可以分为三步:

  • 导入模型;
  • 读取测试数据并且进行预测;
  • 生成提交所需的版本;
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.layers import Input 
import numpy as np
import os
import zipfile

def RMSE(y_true, y_pred):
    return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))

def build_model(train_feat, test_feat): #allfeatures, 
    inp    = Input(shape=(len(train_feat)))  

    x = Dense(1024, activation='relu')(inp)  
    x = Dropout(0.25)(x) 
    x = Dense(512, activation='relu')(x)   
    x = Dropout(0.25)(x)  
    output = Dense(len(test_feat), activation='linear')(x)   
    model  = Model(inputs=inp, outputs=output)

    adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99) 
    model.compile(optimizer=adam, loss=RMSE)

    return model

feature_cols = ['month_{}'.format(i+1) for i in range(12)]
label_cols   = ['month_{}'.format(i+1) for i in range(12, 36)] 
model = build_model(train_feat=feature_cols, test_feat=label_cols)
model.load_weights('./user_data/model_data/model_mlp_baseline.h5')

模型预测


test_path = './tcdata/enso_round1_test_20210201/'

### 0. 模拟线上的测试集合
# for i in range(10):
#     x = np.random.random(12) 
#     np.save(test_path + "{}.npy".format(i+1),x)

### 1. 测试数据读取
files = os.listdir(test_path)
test_feas_dict = {
   
   }
for file in files:
    test_feas_dict[file] = np.load(test_path + file)

### 2. 结果预测
test_predicts_dict = {
   
   }
for file_name,val in test_feas_dict.items():
    test_predicts_dict[file_name] = model.predict(val.reshape([-1,12]))
#     test_predicts_dict[file_name] = model.predict(val.reshape([-1,12])[0,:])

### 3.存储预测结果
for file_name,val in test_predicts_dict.items(): 
    np.save('./result/' + file_name,val)

打包到run.sh目录下方

#打包目录为zip文件
def make_zip(source_dir='./result/', output_filename = 'result.zip'):
    zipf = zipfile.ZipFile(output_filename, 'w')
    pre_len = len(os.path.dirname(source_dir))
    source_dirs = os.walk(source_dir)
    print(source_dirs)
    for parent, dirnames, filenames in source_dirs:
        print(parent, dirnames)
        for filename in filenames:
            if '.npy' not in filename:
                continue
            pathfile = os.path.join(parent, filename)
            arcname = pathfile[pre_len:].strip(os.path.sep)   #相对路径
            zipf.write(pathfile, arcname)
    zipf.close()
make_zip()

项目链接以及码源

云端链接:
人工智能创新挑战赛海洋气象预测Baseline[4]完整版

更多文章请关注公重号:汀丶人工智能

5.提升方向

模型性能提升可以参考:在下述基础上改动

“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模

“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[3]:TCNN+RNN模型、SA-ConvLSTM模型

  • 模型角度:我们只使用了简单的MLP模型进行建模,可以考虑使用其它的更加fancy的模型进行尝试;
  • 数据层面:构建一些特征或者对数据进行一些数据变换等;
  • 针对损失函数设计各种trick的提升技巧;
相关文章
|
1月前
|
并行计算 Shell TensorFlow
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
在使用TensorFlow-GPU训练MTCNN时,如果遇到“Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED”错误,通常是由于TensorFlow、CUDA和cuDNN版本不兼容或显存分配问题导致的,可以通过安装匹配的版本或在代码中设置动态显存分配来解决。
47 1
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
|
1月前
|
数据采集 TensorFlow 算法框架/工具
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
本教程详细介绍了如何使用TensorFlow 2.3训练自定义图像分类数据集,涵盖数据集收集、整理、划分及模型训练与测试全过程。提供完整代码示例及图形界面应用开发指导,适合初学者快速上手。[教程链接](https://www.bilibili.com/video/BV1rX4y1A7N8/),配套视频更易理解。
39 0
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
17 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
17 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
108 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
54 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
102 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
42 5