每日算法系列【LeetCode 376】摆动序列

简介: 每日算法系列【LeetCode 376】摆动序列

题目描述

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 [6,-3,5,-7,3] 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例1

输入:
[1,7,4,9,2,5]
输出:
6
解释:
整个序列均为摆动序列。

示例2

输入:
[1,17,5,10,13,15,10,5,16,8]
输出:
7
解释:
这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例3

输入:
[1,2,3,4,5,6,7,8,9]
输出:
2

题解

这题题面说的啰里啰唆的,其实就一句话:给你一个序列,找出最长的一个子序列,其中子序列相邻两个数的大小是波形的(也就是大小大小大等等这样的)。

暴力法

用 dfs 枚举所有可能的子序列,然后看最长的是多少,这种方法显然会超时。

动态规划

其实看到这道题,我第一个想到了最长上升子序列,这不就变了个形式嘛,于是动态规划解法直接就有了。

用  表示以  结尾的符合条件的最长子序列长度,其中 s 取 1 表示在  处子序列上升,取 0 表示下降。那么我们只需要遍历之前的所有 j ,如果  ,那么在 j 处必须是要下降的,更新:

如果  ,那么在 j 处必须是要上升的,更新:

然后取数组中最大值就是答案了,时间复杂度  。

动态规划+时间优化

换个定义,用  表示  之前的最长子序列,注意和上面的区别就是不一定以  结尾了。s 取 1 表示最后两个数是上升的,取 0 表示最后两个数是下降的。

这里分为几种情况:

  • :
  • 考虑  ,也就是最后两个数下降的,那肯定不能取  ,因为  比它更小、更优,所以直接更新为  。
  • 考虑  ,也就是最后两个数上升的,那如果不取  ,那更新为  ;如果取的话,我们就要保证 i-1 之前最后两个数是下降的,并且之前的最后一个数小于  。我们可以证明, i-1 之前的最后两个下降的数一定满足:第二个数  是小于  的,因为如果  ,那么 j 到 i 之间的数一定是单调下降的,否则存在更长的子序列,那么就和  矛盾了。综上,取的话  更新为  。
  • : 同样考虑最后两个数上升还是下降,分析和上面一样。

综上考虑,时间复杂度可以降为  ,空间复杂度是  。

动态规划+空间优化

在上面优化的基础上,我们还可以观察到,每一次  其实只会用到  ,所以我们只需要保存当前和前一时刻的状态就行了,空间复杂度可以降为  。

贪心法

其实这题还可以直接贪心做,考虑一段连续的上升序列,最优子序列一定是包括了首尾两个数的,因为首是最小的数,选了它才能给前一个数留出更大的上升空间,而尾是最大的数,选了它才能给下一个数留出更多的下降空间。

所以我们贪心的扫描一遍数组,遇到上升或者下降的转折点就选取这个数。而如果数组不升不降,也就是不变的话,就不用管它,因为这些相同的数里面只需要选取一个就行了。

时间复杂度是  ,空间复杂度是  。

代码

动态规划(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int dp[n][2], res = 1;
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] != nums[i]) {
                    int s = nums[j] < nums[i];
                    dp[i][s] = max(dp[i][s], dp[j][s^1]+1);
                }
            }
            res = max(res, dp[i][0]);
            res = max(res, dp[i][1]);
        }
        return res;
    }
};

动态规划+时间优化(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int dp[n][2];
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] == nums[i-1]) {
                dp[i][0] = dp[i-1][0];
                dp[i][1] = dp[i-1][1];
            } else {
                int s = nums[i] > nums[i-1];
                dp[i][s] = max(dp[i-1][s], dp[i-1][s^1] + 1);
                dp[i][s^1] = dp[i-1][s^1];
            }
        }
        return max(dp[n-1][0], dp[n-1][1]);
    }
};

动态规划+空间优化(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int dp[2][2];
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] == nums[i-1]) {
                dp[1][0] = dp[0][0];
                dp[1][1] = dp[0][1];
            } else {
                int s = nums[i] > nums[i-1];
                dp[1][s] = max(dp[0][s], dp[0][s^1]+1);
                dp[1][s^1] = dp[0][s^1];
                swap(dp[0][s], dp[1][s]);
                swap(dp[0][s^1], dp[1][s^1]);
            }
        }
        return max(dp[0][0], dp[0][1]);
    }
};

贪心(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int res = 1, pre_ord = -1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] == nums[i-1]) continue;
            int ord = nums[i] > nums[i-1];
            if (ord != pre_ord) res++;
            pre_ord = ord;
        }
        return res;
    }
};

后记

鼠年快乐,新年献给大家的第一道题,尽量写的详细一点。

官方题解没有严谨的证明,虽然方法也是这 5 种,但是没有说清楚,不能令人信服。

相关文章
|
2月前
|
存储 算法 JavaScript
怎么刷算法,leetcode上有哪些经典题目
怎么刷算法,leetcode上有哪些经典题目
16 0
|
2月前
|
存储 算法
《LeetCode》—— 摆动序列
《LeetCode》—— 摆动序列
|
2月前
|
算法 Java
[Java·算法·简单] LeetCode 27. 移除元素 详细解读
[Java·算法·简单] LeetCode 27. 移除元素 详细解读
25 1
|
2月前
|
算法 Java
[Java·算法·简单] LeetCode 13. 罗马数字转整数 详细解读
[Java·算法·简单] LeetCode 13. 罗马数字转整数 详细解读
25 0
|
2月前
|
算法 Java
[Java·算法·简单] LeetCode 392. 判断子序列 详细解读
[Java·算法·简单] LeetCode 392. 判断子序列 详细解读
33 0
|
2月前
|
算法 Java
[Java·算法·中等] LeetCode15. 三数之和
[Java·算法·中等] LeetCode15. 三数之和
32 0
|
4天前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI 操作报错合集之请问Alink的算法中的序列异常检测组件,是对数据进行分组后分别在每个组中执行异常检测,而不是将数据看作时序数据进行异常检测吧
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
5天前
|
算法 数据安全/隐私保护 数据格式
基于混沌序列的图像加解密算法matlab仿真,并输出加解密之后的直方图
该内容是一个关于混沌系统理论及其在图像加解密算法中的应用摘要。介绍了使用matlab2022a运行的算法,重点阐述了混沌系统的特性,如确定性、非线性、初值敏感性等,并以Logistic映射为例展示混沌序列生成。图像加解密流程包括预处理、混沌序列生成、数据混淆和扩散,以及密钥管理。提供了部分核心程序,涉及混沌序列用于图像像素的混淆和扩散过程,通过位操作实现加密。
|
6天前
|
编解码 算法 数据可视化
【视频】时间序列分类方法:动态时间规整算法DTW和R语言实现
【视频】时间序列分类方法:动态时间规整算法DTW和R语言实现
11 0
|
14天前
|
算法
代码随想录算法训练营第六十天 | LeetCode 84. 柱状图中最大的矩形
代码随想录算法训练营第六十天 | LeetCode 84. 柱状图中最大的矩形
18 3