带你读《Elastic Stack 实战手册》之45:——3.5.4.Graph (上)

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 带你读《Elastic Stack 实战手册》之45:——3.5.4.Graph (上)

3.5.4.Graph


创作人:杨丛聿

审稿人:朱荣鑫

 

Graph 介绍

 

图作为一种现实中广泛存在的结构,与我们的生活息息相关,如社交网络、交通网络等。如何抽象的描述这些结构,并对其进行分析,获取潜在价值是一个普遍存在的问题。

 

相比于我们熟悉的关系数据库的建模方式,从 Graph 的角度出发,可以让一些复杂问题和场景的处理变得简单,如行为分析、个性化推荐、知识图谱等。

 

通常来讲,对于图的研究,分为图存储和图计算分析两个场景,二者解决的问题不同,相应的技术栈也有一些差异。

 

图存储

 

更强调图结构的建模,以及解决诸如邻居、路径等查询问题。

 

图计算

 

则是从全局或子图的角度为出发点,经过大量计算,来发现更深层次的问题,其关注的技术点,更多的是资源调度,以及各类经典图分析算法的实现。

 

Elasticsearch 的 Graph 功能介于二者之间,其定位是对已有的结构化数据进行分析,从图的角度去审视已有数据,并发现潜在价值。

 

图通常是以 vertex 和 edge 的模型管理数据,Elasticsearch 也不例外,只是区别于图数据库的先建模后存储,Elasticsearch 中 Graph 的建模逻辑,是在查询中动态填入的,其底层实现


逻辑是基于 Elasticsearch 的 terms 和 aggregations 相关功能。

 

相比于图数据库通常只提供基于 vertex 和 edge 的基础查询,Elasticsearch 由于本身在构建倒排索引时会统计词频,这使其在查询层面,兼具一定的分析能力。可见 Elasticsearch

Graph 本身的定位并不是图结构数据的管理(如知识图谱),而是在已有的结构化数据中,以图的视角来发现一些问题。如库中已存在用户的听歌记录,则可以根据听众偏好,为其进行歌曲的推荐。

 

其他图数据库概览

 

由于 Elasticsearch 本身从逻辑上更接近图数据库,不管是 vertices + connections 的数据模型还是查询模式,本节先介绍下目前主流图数据库的类别和实现逻辑,具体细节不进行展开。

 

目前主流的图数据库,以属性图和 RDF 模型为主;

RDF 相对小众,仅有 DGraph 属于此范畴;

属性图是由节点、边、属性三者构成的有向图,相比于其他数据库,其关键特征之一是边(或连接)与顶点一同被视为模型的核心组件


基于这些理念,一般属性图数据的结构可以归纳如下:

 

每个顶点(vertex)包括:

 

l 唯一标识符

l 一组出边

l 一组入边

l 一组属性(键值对

 

每条边(edge)包括:

 

l 唯一标识符

l 边的起点


l 边的终点

l 描述两个顶点间关系类型的标签

l 一组属性(键值对)

 

对于各类图数据库而言,数据建模的核心便是如何组织这些数据,从存储和索引的角度来看,目前主要分为自行实现和 Graph 层两种:

 

自行实现存储索引

 

代表如 neo4j,其使用了免索引邻接,即每个节点都会维护其相邻节点的引用,免去了基于索引查找相邻节点的开销,这个设计理念在很多图数据库中都可以看到;

 

以 Graph 层的形式构建,使用外置 Nosql 存储和外置索引

 

代表 JanusGraph、HugeGraph,对于此类图数据库,Elasticsearch 便可作为其索引层存在。

除此以外,如何在分布式场景下,对存储和计算进行优化,是各类图数据库遇到的最大问题,针对诸如分布式场景下的分片、删除等问题,逐步诞生了 NebulaGraph、 Dgraph 等。


《Elastic Stack 实战手册》——三、产品能力——3.5 进阶篇——3.5.4.Graph (下) https://developer.aliyun.com/article/1228724

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
算法 计算机视觉
使用积分图的自适应二值化算法
使用积分图的自适应二值化算法
|
6月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
3238 0
mapshaper命令:geojson转shp中文乱码的解决方案
mapshaper命令:geojson转shp中文乱码的解决方案
772 0
|
12月前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
277 28
|
人工智能 安全 JavaScript
Open Interpreter:AI 赋能终端!在终端中对话AI模型进行编程,通过运行代码来完成各种计算机操作任务
Open Interpreter 是一个让语言模型运行代码的强大工具,提供了一个类似 ChatGPT 的界面,支持多种编程语言和丰富的功能。
730 7
Open Interpreter:AI 赋能终端!在终端中对话AI模型进行编程,通过运行代码来完成各种计算机操作任务
|
存储 缓存 监控
快速掌握Redis优化要点,告别性能瓶颈!
# Redis优化指南 了解如何提升Redis性能,从读写方式(整体与部分)、KV size、Key数量、读写峰值、命中率、过期策略、平均穿透加载时间、可运维性、安全性等方面着手。选择合适的读写策略,如只整体读写或部分读写变更,优化KV size避免过大或差异过大,合理管理Key数量,应对不同读写峰值,监控命中率并持续优化,设置智能过期策略,减少平均穿透加载时间,确保高可运维性并强化安全性。一起探索Redis的性能潜力!
2841 5
|
机器学习/深度学习 监控 安全
|
Prometheus 监控 Cloud Native
prometheus学习笔记之Grafana安装与配置
prometheus学习笔记之Grafana安装与配置
2903 2
|
存储 安全
现在降低企业IT成本的11种方法
现在降低企业IT成本的11种方法
|
存储 Android开发 Kotlin
开发安卓app OKhttp下载后使用MediaPlayer播放
在Android Jetpack Compose应用程序中,要使用OkHttp下载远程音频文件并在本地播放,你需要完成以下几个步骤: 1. **添加依赖**:确保`build.gradle`文件包含OkHttp和Jetpack Compose的相关依赖。 2. **下载逻辑**:创建一个`suspend`函数,使用OkHttp发起网络请求下载音频文件到本地。 3. **播放逻辑**:利用`MediaPlayer`管理音频播放状态。 4. **Compose UI**:构建用户界面,包含下载和播放音频的按钮。