ResNet50上天 | DDQ改进Sparse RCNN让ResNet50在coco上来到了49.8的AP(二)

简介: ResNet50上天 | DDQ改进Sparse RCNN让ResNet50在coco上来到了49.8的AP(二)

3实验


3.1 From Sparse R-CNN to DDQ

表 1 显示了本研究中从 Sparse R-CNN 到 DDQ 的逐步提升。使用 300 个查询的 Sparse R-CNN 使用标准的 1× 训练实现了 39.4 AP,这比使用 3× 训练时间和更重的增强低约 5.6 AP。训练时间短的性能显著下降已经暗示了 Sparse R-CNN 的收敛困难。

表 1 From Sparse R-CNN to DDQ

在每个阶段开始时对查询应用重复删除可将性能提高 2AP 至 41.4AP,而推理速度几乎没有牺牲。将查询数量进一步增加到 7000 也可以提高性能,但推理时间会很长。

用开发的 RPN 结构生成的特征替换独立查询并减少到 2 个细化阶段,保持使用 7000 个查询的性能,但在内存和推理时间上的成本显著降低。最后,DDQ 在延迟方面能够与 Sparse R-CNN 相媲美,但由于其他一些进一步的结构改进,例如 FRF RoIAlignQuery Distinctness Enhancement,它实现了 44.5 AP。这一性能领先于采用相同Backbone的最先进的目标检测器高 2个AP。巨大的改进证明了密集和不同查询作为设计目标检测器的指导原则的有效性。

请注意,DDQ 仅增加了 Sparse R-CNN 的边际推理延迟(17.7 ms vs 16.4 ms),这比其他竞争方法快得多。例如,Deformable DETR 以 21.7 ms 的延迟实现 AP 43.8 AP,Cascade R-CNN 以 19.4 ms 的延迟实现 40.3 AP。DDQ 都比这些方法实现了更好的性能和更快的推理。

3.2 SOTA对比


4参考


[1].What Are Expected Queries in End-to-End Object Detection?


5推荐阅读


STDC升级 | STDC-MA 更轻更快更准,超越 STDC 与 BiSeNetv2

EfficientFormer | 苹果手机实时推理的Transformer模型,登顶轻量化Backbone之巅

LITv2来袭 | 使用HiLo Attention实现高精度、快速度的变形金刚,下游任务均实时

目录
打赏
0
0
0
0
34
分享
相关文章
PrObeD方法开源 | 主动方法助力YOLOv5/Faster RCNN/DETR在COCO/GOD涨点
PrObeD方法开源 | 主动方法助力YOLOv5/Faster RCNN/DETR在COCO/GOD涨点
145 0
RecursiveDet | 超越Sparse RCNN,完全端到端目标检测的新曙光
RecursiveDet | 超越Sparse RCNN,完全端到端目标检测的新曙光
177 0
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(二)
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(二)
214 0
目标检测改进 | 如何使用IOU改进自注意力以提升Sparse RCNN目标检测性能(二)
目标检测改进 | 如何使用IOU改进自注意力以提升Sparse RCNN目标检测性能(二)
407 0
昇腾910-PyTorch 实现 ResNet50图像分类
本实验基于PyTorch,在昇腾平台上使用ResNet50对CIFAR10数据集进行图像分类训练。内容涵盖ResNet50的网络架构、残差模块分析及训练代码详解。通过端到端的实战讲解,帮助读者理解如何在深度学习中应用ResNet50模型,并实现高效的图像分类任务。实验包括数据预处理、模型搭建、训练与测试等环节,旨在提升模型的准确率和训练效率。
211 54

热门文章

最新文章