倚天使用|倚天性能优化—YCL AI计算库在resnet50上的优化

简介: 本文介绍了x86软件迁移到Arm过程中可能遇到的弱内存序问题的解决方案,解析了弱内存序问题的根因,介绍了Hawkeyes的架构和实现原理。欢迎有需求的团队发送邮件咨询

背景介绍

将多核多线程程序从x86架构的CPU迁移到Arm架构的CPU上往往会面临弱内存序问题。这个问题是迁移过程中的重大阻碍,也是很多业务方斟酌是否应该迁移到Arm机器上的一个关注焦点。因此如何正确且高效地解决这个问题意义重大,关乎Arm和倚天的生态建设。

有许多团队曾经遇到过此类问题,给业务稳定性带来隐患。

倚天团队针对弱内存序问题追本溯源,提供一个可以从根本上能够解决业务弱内存序困扰并能充分体验倚天高性能的解决方案。

弱内存序问题本质剖析

弱内存序问题产生的根本原因是两种架构的CPU具有不同的内存模型(x86:Total Store Order,Arm:Weak Memory Order)。

如下图,x86架构下write memory操作写入内存必须经过write buffer,这是一个FIFO结构,可以严格保证顺序;只有read memory操作可以直接从write buffer或内存中读取,因此可能乱序到write memory之前。而Arm架构下不存在这样的数据结构保证顺序,所有的write memory和read memory操作都可能互相被重排。这导致迁移后的程序在多核的环境中往往会出现由弱内存模型引发的内存读写的乱序现象,很多情况下这种乱序现象与程序原本的逻辑相违背。

下面是一个程序示意,在x86上该程序不会出现assert错误由TSO保证了内存访问按照代码逻辑顺序执行,而迁移到Arm上时,该程序很可能出现assert断言错误,原因是thread1对变量a和变量b的访问出现了乱序,变量a在变量b被赋值之前并没有被正确赋值,乱序到了b = 1对应的指令之后。

assert(a == 1);

简单的解决方案是在程序中的乱序风险位置添加memory barrier,在Arm架构下我们通常使用类似“dmb ish”这样的指令。

一般我们在迁移过程中都是通过专家对程序进行逻辑分析和排查来解决这类问题,然而人工排查程序中存在的乱序问题对于大型程序来说费力且无法在正确性上得到保证,存在大量的漏报现象,因此亟需自动化的工具协助人工进行定位和检测。

我们的方案:Hawkeyes

Hawkeyes工具即是我们带来的弱内存序问题解决方案

workflow说明

原理介绍

基于Tsan抓取memory access conflicts

可以在前面的例子中看到出现弱内存序问题的场景实际上可以分解成多线程对于多个全局变量的异步访问存在逻辑顺序规定的问题。因此要定位弱内存序问题必须首先定位内存访问冲突,在此基础上我们可以通过分析同一个线程内。

我们基于Thread Sanitizer(Tsan)这一集成在gcc中的Data Race检测器来实现我们的内存冲突检测工具。通过定制化Tsan,使其在程序运行时能够动态地抓取并输出所有对于同一块内存区域进行过访问的线程及其调用栈信息

具体的技术细节是通过编译时对所有内存访问指令位置插桩,在运行时通过shadow memory存储记录线程访问相关的信息,再在每次对shadow memory作更新时对这些存储的信息和新记录的信息进行处理并进行冲突分析。

插桩示意图如下:

shadow memory检测

基于Instruction window对冲突区域作过滤

指令窗口(Instruction Window)是现代处理器的硬件架构中被广泛使用的一个结构,可以简单理解为处于同一个指令窗口大小内的指令会被乱序发射,而指令窗口外的指令则互相之间不会存在乱序现象,指令窗口的大小在不同的处理器中是不一样的。

利用这个特性,我们可以在每一个线程中对前面抓取到的所有内存冲突位置进行指令区间大小的分析,分解所有指令为微指令micro-instruction,再与指令窗口大小作比较进行判断,位于同一个指令窗口内的指令即为潜在的存在乱序的位置。再将指令对应到源码层级,即可给出源码层级对于内存屏障的修改建议,方便开发者进行检查和修改。

检查不同线程间的乱序区间来进行精准定位

上一步的结果实际上只是帮助我们找到了程序中所有可能出现“乱序情况”的内存访问指令区间,而不能直接帮助我们定位乱序情况导致的弱内存序错误。弱内存序问题实际上需要多个线程包含相同的乱序区间才会真正产生,因为只有这种情况才会出现逻辑上的依赖关系。(当然直接在所有此类乱序区间添加屏障也不失为一种简单粗暴的解决办法,并且在Tsan无法输出足够多的信息时是更好的办法)

同样举典型的弱内存序问题例子来看,我们新增一个全局变量c,让thread3进行变量b和变量c的读操作,thread3进行变量c的写操作。我们可以从定制后的Tsan的结果中得到变量b和变量c均存在内存访问冲突的现象(因为都被不同的thread在不同的时间先后读取或写入),假设thread3的读b和读c的指令都在同一个指令窗口内,那么可以说明这两条指令之间会存在乱序现象,然而这种乱序情况对程序逻辑并没有任何影响,因为在thread4中并不存在对变量b的读写操作,因此他们之间实际上没有逻辑依赖关系。

c = 1;

因此单纯的乱序情况实际上是被我们所允许的,可以说Arm架构下更多的乱序情况本身就相对x86严格的保序情况有更大的性能提升,这也是Arm用作高性能计算的优势之一。

因此进一步的,我们需要对不同线程之间所有对应相同内存访问区域的乱序区间进行匹配,如果存在诸如thread1 和thread2的情况那样有相同的乱序区间(thread1中write a 和write b区间,thread2中read b和 read a区间),即可判定为严重的弱内存序问题风险位置,输出报告并由开发者进行进一步的分析判断。

Case演示

我们以内部某数据库团队遇到的无锁队列问题为例,使用我们的工具对源码进行重编译和检测。

源代码关键部分如下:

具体工具使用步骤:

  • 在替换定制后的libtsan.so并在编译时加上-fsanitize=thread选项重新编译后,程序运行时输出中会有如下片段,将所有输出记录为output.log
==================
  • 将二进制文件进行反汇编输出到obj.log中
  • 将output.log和obj.log作为输入提供给我们的工具,最终我们的工具会提供类似如下形式的输出:

  • 报告提供了源代码中存在风险的具体源文件和对应的行数,并提供了建议插入的源码,提供了相应的汇编形式的乱序区域供开发者进行进一步判断。这里建议27行和30行源码之间插入dmb内存屏障,符合问题的人工定位结果

使用说明

环境配置和要求

gcc版本:GCC 10以上 (低版本GCC有时会存在Tsan输出调用栈信息不全的情况)

架构环境:aarch64

运行指南

此工具还在不断开发完善中,当前工具可以完成基本的弱内存序问题检测功能,欢迎有程序迁移需求的团队发送邮件到zhuzhangqi.zzq@alibaba-inc.com

我们会提供当前最新版本的使用方式和环境配置等技术支持,欢迎在使用过程中提出的一切反馈与建议!

好啦!小弹的分享到此为止。我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~


相关文章
|
9天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
9天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
12天前
|
机器学习/深度学习 人工智能 前端开发
【AI系统】计算图的控制流实现
计算图作为有向无环图(DAG),能够抽象神经网络模型,但在编程中遇到控制流语句(如if、else、while、for)时,如何表示成为难题。引入控制流后,开发者可构建更复杂的模型结构,但部署含控制流的模型至不支持Python的设备上较为困难。目前,PyTorch仅支持Python控制流,而TensorFlow通过引入控制流原语来解决此问题。计算图的动态与静态实现各有优劣,动态图易于调试,静态图利于优化。
39 5
【AI系统】计算图的控制流实现
|
12天前
|
机器学习/深度学习 人工智能 算法
【AI系统】计算图挑战与未来
当前主流AI框架采用计算图抽象神经网络计算,以张量和算子为核心元素,有效表达模型计算逻辑。计算图不仅简化数据流动,支持内存优化和算子调度,还促进了自动微分功能的实现,区分静态图和动态图两种形式。未来,计算图将在图神经网络、大数据融合、推理部署及科学计算等领域持续演进,适应更复杂的计算需求。
45 5
【AI系统】计算图挑战与未来
|
12天前
|
机器学习/深度学习 人工智能 PyTorch
【AI系统】计算图基本介绍
近年来,AI框架如TensorFlow和PyTorch通过计算图描述神经网络,推动了AI技术的发展。计算图不仅抽象了神经网络的计算表达,还支持了模型算子的高效执行、梯度计算及参数训练。随着模型复杂度增加,如MOE、GAN、Attention Transformer等,AI框架需具备快速分析模型结构的能力,以优化训练效率。计算图与自动微分紧密结合,实现了从前向计算到反向传播的全流程自动化。
36 4
【AI系统】计算图基本介绍
|
13天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
44 4
【AI系统】计算图优化架构
|
12天前
|
人工智能 调度 算法框架/工具
【AI系统】计算图的调度与执行
深度学习训练过程涉及前向计算、计算损失及更新权重参数。AI框架通过计算图统一表示训练过程,算子作为计算图的节点,由后端硬件高效执行。计算图调度包括算子间的调度、并发调度和异构调度,确保计算资源的有效利用。图执行模式分为单算子执行、整图下沉执行和图切分多设备执行,适应不同场景需求。以PyTorch为例,其算子执行通过两次调度选择合适的Kernel进行张量操作,并支持自动求导。
43 5
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
52 10
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
4天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。

热门文章

最新文章

下一篇
DataWorks