Google论文解读:轻量化卷积神经网络MobileNetV2 | PaperDaily #38

简介:

本文是 Google 团队在 MobileNet 基础上提出的 MobileNetV2,其同样是一个轻量化卷积神经网络。目标主要是在提升现有算法的精度的同时也提升速度,以便加速深度网络在移动端的应用。

如果你对本文工作感兴趣,点击底部的阅读原文即可查看原论文。

关于作者:陈泰红,小米高级算法工程师,研究方向为人脸检测识别,手势识别与跟踪。

  • 论文 | Inverted Residuals and Linear Bottlenecks: Mobile Networks forClassification, Detection and Segmentation
  • 链接 | https://www.paperweekly.site/papers/1545
  • 源码 | https://github.com/Randl/MobileNet2-pytorch/
论文动机

很多轻量级的 CNN 模型已经在便携移动设备应用(如手机):MobileNet、ShuffleNet 等,但是效果差强人意。

本文是 Google 团队在 MobileNet 基础上提出的 MobileNetV2,实现分类/目标检测/语义分割多目标任务:以 MobileNetV2 为基础设计目标检测模型 SSDLite(相比 SSD,YOLOv2 参数降低一个数量级,mAP 无显著变化),语义分割模型 Mobile DeepLabv3。

MobileNetV2 结构基于 inverted residual。其本质是一个残差网络设计,传统 Residual block 是 block 的两端 channel 通道数多,中间少,而本文设计的 inverted residual 是 block 的两端 channel 通道数少,block 内 channel 多,类似于沙漏和梭子形态的区别。另外保留 Depthwise Separable Convolutions。

论文模型在 ImageNet classification,COCO object detection,VOC image segmentation 等数据集上进行了验证,在精度、模型参数和计算时间之前取得平衡

Preliminaries, discussion and intuition

1. Depthwise Separable Convolutions

首先对每一个通道进行各自的卷积操作,有多少个通道就有多少个过滤器。得到新的通道 feature maps 之后,这时再对这批新的通道 feature maps 进行标准的 1×1 跨通道卷积操作。

标准卷积操作计算复杂度

54a49a284695296b4128fc9ffe54a444a454bd09

,Depthwise Separable Convolutions 计算复杂度

173fac6046601417c35b42f3d371596e63753938

,复杂度近似较少近似 k*k。

2. Linear Bottlenecks

本篇文章最难理解的是这部分,论文中有两个结论:

If the manifold of interest remains non-zero volume after ReLU transformation, it corresponds to a linear transformation.

感兴趣区域在 ReLU 之后保持非零,近似认为是线性变换。

ReLU is capable of preserving complete information about the input manifold, but only if the input manifold lies in a low-dimensional subspace of the input space.

ReLU 能够保持输入信息的完整性,但仅限于输入特征位于输入空间的低维子空间中。

对于低纬度空间处理,论文中把 ReLU 近似为线性转换。

3. Inverted residuals

inverted residuals 可以认为是 residual block 的拓展。在 0<t<1,其实就是标准的残差模块。论文中 t 大部分为 6,呈现梭子的外形,而传统残差设计是沙漏形状。

模型结构

论文提出的 MobileNetV2 模型结构容易理解,基本单元 bottleneck 就是 Inverted residuals 模块,所用到的 tricks 比如 Dwise,就是 Depthwise Separable Convolutions,即各通道分别卷积。表 3 所示的分类网络结构输入图像分辨率 224x224,输出是全卷积而非 softmax,k 就是识别目标的类别数目。

1. MobileNetV2

MobileNetV2 的网络结构中,第 6 行 stride=2,会导致下面通道分辨率变成14x14,从表格看,这个一处应该有误。

0d81eda742bf793af0c9dd9e2a523135bf8a3a2a

2. MobileNetV1、MobileNetV2 和 ResNet 微结构对比


3ec872278bbff15e9a2e80ebdf7a519aaf3cf949

可以看到 MobileNetV2 和 ResNet 基本结构很相似。不过 ResNet 是先降维(0.25 倍)、提特征、再升维。而 MobileNetV2 则是先升维(6 倍)、提特征、再降维。

实验

1. ImageNet Classification

表 3 在 ImageNet 数据集对比了 MobileNetV1、ShuffleNet,MobileNetV2 三个模型的 Top1 精度,Params 和 CPU(Google Pixel 1 phone)执行时间。MobileNetV2 运行时间 149ms,参数 6.9M,Top1 精度 74.7。

在 ImageNet 数据集,依 top-1 而论,比 ResNet-34,VGG19 精度高,比 ResNet-50 精度低。

aaf77aa06e61b242735e6eed4aaa50264b97dbcd

2. Object Detection

论文以 MobileNetV2 为基本分类网络,实现 MNet V2 + SSDLite,耗时 200ms,mAP 22.1,参数只有 4.3M。相比之下,YOLOv2 mAP 21.6,参数50.7M。模型的精度比 SSD300 和 SSD512 略低。

3. Semantic Segmentation

当前 Semantic Segmentation 性能最高的架构是 DeepLabv3,论文在 MobileNetV2 基础上实现 DeepLabv3,同时与基于 ResNet-101 的架构做对比,实验效果显示 MNet V2 mIOU 75.32,参数 2.11M,而 ResNet-101 mIOU80.49,参数 58.16M,明显 MNet V2 在实时性方面具有优势。

结论

CNN 在 CV 领域突破不断,但是在小型化性能方面却差强人意。目前 MobileNet、ShuffleNet 参数个位数(单位 M)在 ImageNet 数据集,依 top-1 而论,比 ResNet-34,VGG19 精度高,比 ResNet-50 精度低。实时性和精度是一对欢喜冤家。

本文最难理解的其实是 Linear Bottlenecks,论文中用很多公式表达这个思想,但是实现上非常简单,就是在 MobileNetV2 微结构中第二个 PW 后无 ReLU6。对于低维空间而言,进行线性映射会保存特征,而非线性映射会破坏特征。


原文发布时间为:2018-02-1

本文作者:陈泰红

本文来自云栖社区合作伙伴“PaperWeekly”,了解相关信息可以关注“PaperWeekly”微信公众号

相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
186 11
|
13天前
|
机器学习/深度学习 边缘计算 算法
SEENN: 迈向时间脉冲早退神经网络——论文阅读
SEENN提出一种时间脉冲早退神经网络,通过自适应调整每个样本的推理时间步数,有效平衡脉冲神经网络的准确率与计算效率。该方法基于置信度判断或强化学习策略,在保证高精度的同时显著降低能耗与延迟,适用于边缘计算与实时处理场景。
52 13
|
9天前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
202 1
|
24天前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
174 7
|
3月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。
|
3月前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
4417 1
如何用Google Earth Engine快速、大量下载遥感影像数据?

热门文章

最新文章