Google论文解读:轻量化卷积神经网络MobileNetV2 | PaperDaily #38

简介:

本文是 Google 团队在 MobileNet 基础上提出的 MobileNetV2,其同样是一个轻量化卷积神经网络。目标主要是在提升现有算法的精度的同时也提升速度,以便加速深度网络在移动端的应用。

如果你对本文工作感兴趣,点击底部的阅读原文即可查看原论文。

关于作者:陈泰红,小米高级算法工程师,研究方向为人脸检测识别,手势识别与跟踪。

  • 论文 | Inverted Residuals and Linear Bottlenecks: Mobile Networks forClassification, Detection and Segmentation
  • 链接 | https://www.paperweekly.site/papers/1545
  • 源码 | https://github.com/Randl/MobileNet2-pytorch/
论文动机

很多轻量级的 CNN 模型已经在便携移动设备应用(如手机):MobileNet、ShuffleNet 等,但是效果差强人意。

本文是 Google 团队在 MobileNet 基础上提出的 MobileNetV2,实现分类/目标检测/语义分割多目标任务:以 MobileNetV2 为基础设计目标检测模型 SSDLite(相比 SSD,YOLOv2 参数降低一个数量级,mAP 无显著变化),语义分割模型 Mobile DeepLabv3。

MobileNetV2 结构基于 inverted residual。其本质是一个残差网络设计,传统 Residual block 是 block 的两端 channel 通道数多,中间少,而本文设计的 inverted residual 是 block 的两端 channel 通道数少,block 内 channel 多,类似于沙漏和梭子形态的区别。另外保留 Depthwise Separable Convolutions。

论文模型在 ImageNet classification,COCO object detection,VOC image segmentation 等数据集上进行了验证,在精度、模型参数和计算时间之前取得平衡

Preliminaries, discussion and intuition

1. Depthwise Separable Convolutions

首先对每一个通道进行各自的卷积操作,有多少个通道就有多少个过滤器。得到新的通道 feature maps 之后,这时再对这批新的通道 feature maps 进行标准的 1×1 跨通道卷积操作。

标准卷积操作计算复杂度

54a49a284695296b4128fc9ffe54a444a454bd09

,Depthwise Separable Convolutions 计算复杂度

173fac6046601417c35b42f3d371596e63753938

,复杂度近似较少近似 k*k。

2. Linear Bottlenecks

本篇文章最难理解的是这部分,论文中有两个结论:

If the manifold of interest remains non-zero volume after ReLU transformation, it corresponds to a linear transformation.

感兴趣区域在 ReLU 之后保持非零,近似认为是线性变换。

ReLU is capable of preserving complete information about the input manifold, but only if the input manifold lies in a low-dimensional subspace of the input space.

ReLU 能够保持输入信息的完整性,但仅限于输入特征位于输入空间的低维子空间中。

对于低纬度空间处理,论文中把 ReLU 近似为线性转换。

3. Inverted residuals

inverted residuals 可以认为是 residual block 的拓展。在 0<t<1,其实就是标准的残差模块。论文中 t 大部分为 6,呈现梭子的外形,而传统残差设计是沙漏形状。

模型结构

论文提出的 MobileNetV2 模型结构容易理解,基本单元 bottleneck 就是 Inverted residuals 模块,所用到的 tricks 比如 Dwise,就是 Depthwise Separable Convolutions,即各通道分别卷积。表 3 所示的分类网络结构输入图像分辨率 224x224,输出是全卷积而非 softmax,k 就是识别目标的类别数目。

1. MobileNetV2

MobileNetV2 的网络结构中,第 6 行 stride=2,会导致下面通道分辨率变成14x14,从表格看,这个一处应该有误。

0d81eda742bf793af0c9dd9e2a523135bf8a3a2a

2. MobileNetV1、MobileNetV2 和 ResNet 微结构对比


3ec872278bbff15e9a2e80ebdf7a519aaf3cf949

可以看到 MobileNetV2 和 ResNet 基本结构很相似。不过 ResNet 是先降维(0.25 倍)、提特征、再升维。而 MobileNetV2 则是先升维(6 倍)、提特征、再降维。

实验

1. ImageNet Classification

表 3 在 ImageNet 数据集对比了 MobileNetV1、ShuffleNet,MobileNetV2 三个模型的 Top1 精度,Params 和 CPU(Google Pixel 1 phone)执行时间。MobileNetV2 运行时间 149ms,参数 6.9M,Top1 精度 74.7。

在 ImageNet 数据集,依 top-1 而论,比 ResNet-34,VGG19 精度高,比 ResNet-50 精度低。

aaf77aa06e61b242735e6eed4aaa50264b97dbcd

2. Object Detection

论文以 MobileNetV2 为基本分类网络,实现 MNet V2 + SSDLite,耗时 200ms,mAP 22.1,参数只有 4.3M。相比之下,YOLOv2 mAP 21.6,参数50.7M。模型的精度比 SSD300 和 SSD512 略低。

3. Semantic Segmentation

当前 Semantic Segmentation 性能最高的架构是 DeepLabv3,论文在 MobileNetV2 基础上实现 DeepLabv3,同时与基于 ResNet-101 的架构做对比,实验效果显示 MNet V2 mIOU 75.32,参数 2.11M,而 ResNet-101 mIOU80.49,参数 58.16M,明显 MNet V2 在实时性方面具有优势。

结论

CNN 在 CV 领域突破不断,但是在小型化性能方面却差强人意。目前 MobileNet、ShuffleNet 参数个位数(单位 M)在 ImageNet 数据集,依 top-1 而论,比 ResNet-34,VGG19 精度高,比 ResNet-50 精度低。实时性和精度是一对欢喜冤家。

本文最难理解的其实是 Linear Bottlenecks,论文中用很多公式表达这个思想,但是实现上非常简单,就是在 MobileNetV2 微结构中第二个 PW 后无 ReLU6。对于低维空间而言,进行线性映射会保存特征,而非线性映射会破坏特征。


原文发布时间为:2018-02-1

本文作者:陈泰红

本文来自云栖社区合作伙伴“PaperWeekly”,了解相关信息可以关注“PaperWeekly”微信公众号

相关文章
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
72 3
|
2月前
|
机器学习/深度学习 Web App开发 编解码
论文精度笔记(四):《Sparse R-CNN: End-to-End Object Detection with Learnable Proposals》
Sparse R-CNN是一种端到端的目标检测方法,它通过使用一组可学习的稀疏提议框来避免传统目标检测中的密集候选框设计和多对一标签分配问题,同时省去了NMS后处理步骤,提高了检测效率。
53 0
论文精度笔记(四):《Sparse R-CNN: End-to-End Object Detection with Learnable Proposals》
|
2月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
45 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
2月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
85 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
7月前
|
机器学习/深度学习 计算机视觉 知识图谱
【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器 (论文笔记+引入代码)
MobileViT是针对移动设备的轻量级视觉Transformer网络,结合CNN的局部特征、Transformer的全局注意力和ViT的表示学习。在ImageNet-1k上,它以600万参数实现78.4%的top-1准确率,超越MobileNetv3和DeiT。MobileViT不仅适用于图像分类,还在目标检测等任务中表现出色,且优化简单,代码已开源。YOLOv8引入了MobileViT块,整合卷积和Transformer结构,提升模型性能。更多详情可参考相关专栏和链接。
|
2月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
59 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
4月前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
56 1
|
5月前
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
|
4月前
|
人工智能 算法 安全
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码
本文总结了2023年第十三届MathorCup高校数学建模挑战赛C题的解题过程,详细阐述了电商物流网络在面临突发事件时的包裹应急调运与结构优化问题,提出了基于时间序列预测、多目标优化、遗传算法和重要性评价模型的综合解决方案,并提供了相应的31页论文和代码实现。
87 0

热门文章

最新文章