详细解读ResNet网络结构,并提供基于PyTorch的实现教程

简介: 【2月更文挑战第13天】

ResNet(Residual Network)是深度学习领域中一种非常重要的卷积神经网络结构,它在解决深层网络训练过程中的梯度消失问题上提供了有效的解决方案。本文将详细解读ResNet网络结构,并提供基于PyTorch的实现教程。

ResNet网络结构解读

Residual学习

ResNet的核心思想是通过引入Skip Connection(跳跃连接)来解决深层网络训练过程中的梯度消失问题。传统的深层网络在前向传播过程中,信息需要依次通过多个网络层,而在反向传播时,梯度也需要通过多个层逐层传播回去。当网络层数较深时,梯度逐层传播会导致梯度消失或梯度爆炸的问题。

ResNet通过在网络中引入跳跃连接来解决这个问题。在跳跃连接中,输入可以直接通过跨层连接传递给输出,使得梯度有更短的路径传播回去,从而避免了梯度消失或梯度爆炸的问题。

ResNet基本模块

ResNet的基本模块是Residual Block(残差块),它由两个或三个卷积层组成,以及跳跃连接。其中,两个卷积层的输出和输入相加后再经过一个非线性激活函数,形成最终的残差块输出。

以下是一个简化的Residual Block示意图:

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        # 跳跃连接
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )
        else:
            self.shortcut = nn.Sequential()

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += self.shortcut(identity)
        out = self.relu(out)

        return out

ResNet网络结构

ResNet的网络结构由多个Residual Block组成,其中包含了若干组不同层数的残差块。最常见的ResNet结构有ResNet-34和ResNet-50,表示网络深度的数字即指的是网络中Residual Block的数量。

以下是一个简化的ResNet-34结构示意图:

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_channels = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0], stride=1)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, channels, blocks, stride=1):
        layers = []
        layers.append(block(self.in_channels, channels, stride))
        self.in_channels = channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.maxpool(out)

        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        out = self.avgpool(out)
        out = torch.flatten(out, 1)
        out = self.fc(out)

        return out

ResNet的PyTorch实现教程

导入必要的库

在开始实现ResNet之前,我们首先需要导入必要的PyTorch库:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

定义超参数

接下来,我们定义一些超参数,包括训练轮数、批次大小、学习率等:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

num_epochs = 10
batch_size = 128
learning_rate = 0.001

准备数据集

我们使用CIFAR-10数据集来训练ResNet网络。PyTorch提供了一个方便的数据集类来加载CIFAR-10数据集,我们只需要指定数据集的根目录和预处理操作即可:

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
                                           shuffle=True, num_workers=2)

test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                            download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,
                                          shuffle=False, num_workers=2)

定义模型和损失函数

我们使用之前定义的ResNet结构来构建模型,并选择交叉熵损失函数和Adam优化器:

model = ResNet(ResidualBlock, [3, 4, 6, 3]).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

训练模型

接下来,我们开始训练模型。在每一个训练轮次中,我们依次遍历训练数据集,将输入数据和标签数据送入模型进行前向传播和反向传播,并更新模型参数。最后,我们在测试数据集上评估模型的准确率。

total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)

        outputs = model(images)
        loss = criterion(outputs, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

测试模型

最后,我们使用训练好的模型对测试数据集进行预测,并计算模型的准确率:

model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

结论

本文详细解读了ResNet的网络结构,并提供了基于PyTorch的实现教程。通过引入跳跃连接,ResNet解决了深层网络训练中的梯度消失问题,在众多计算机视觉任务中取得了出色的性能。希望本文能帮助读者更好地理解ResNet,并能够在实际应用中灵活运用。如有任何问题,请查阅官方文档或其他专业来源。

目录
相关文章
|
2月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
148 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
2月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
220 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
2月前
|
机器学习/深度学习 自动驾驶 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
153 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
11天前
|
域名解析 API PHP
VM虚拟机全版本网盘+免费本地网络穿透端口映射实时同步动态家庭IP教程
本文介绍了如何通过网络穿透技术让公网直接访问家庭电脑,充分发挥本地硬件性能。相比第三方服务受限于转发带宽,此方法利用自家宽带实现更高效率。文章详细讲解了端口映射教程,包括不同网络环境(仅光猫、光猫+路由器)下的设置步骤,并提供实时同步动态IP的两种方案:自建服务器或使用三方API接口。最后附上VM虚拟机全版本下载链接,便于用户在穿透后将服务运行于虚拟环境中,提升安全性与适用性。
|
3月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
286 66
|
7天前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
|
3月前
|
机器学习/深度学习 算法 PyTorch
昇腾910-PyTorch 实现 ResNet50图像分类
本实验基于PyTorch,在昇腾平台上使用ResNet50对CIFAR10数据集进行图像分类训练。内容涵盖ResNet50的网络架构、残差模块分析及训练代码详解。通过端到端的实战讲解,帮助读者理解如何在深度学习中应用ResNet50模型,并实现高效的图像分类任务。实验包括数据预处理、模型搭建、训练与测试等环节,旨在提升模型的准确率和训练效率。
194 54
|
2月前
|
机器学习/深度学习 编解码 TensorFlow
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
134 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
2月前
|
监控 Linux PHP
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
99 20
|
2月前
|
机器学习/深度学习 自动驾驶 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
210 13

热门文章

最新文章