详细解读ResNet网络结构,并提供基于PyTorch的实现教程

简介: 【2月更文挑战第13天】

ResNet(Residual Network)是深度学习领域中一种非常重要的卷积神经网络结构,它在解决深层网络训练过程中的梯度消失问题上提供了有效的解决方案。本文将详细解读ResNet网络结构,并提供基于PyTorch的实现教程。

ResNet网络结构解读

Residual学习

ResNet的核心思想是通过引入Skip Connection(跳跃连接)来解决深层网络训练过程中的梯度消失问题。传统的深层网络在前向传播过程中,信息需要依次通过多个网络层,而在反向传播时,梯度也需要通过多个层逐层传播回去。当网络层数较深时,梯度逐层传播会导致梯度消失或梯度爆炸的问题。

ResNet通过在网络中引入跳跃连接来解决这个问题。在跳跃连接中,输入可以直接通过跨层连接传递给输出,使得梯度有更短的路径传播回去,从而避免了梯度消失或梯度爆炸的问题。

ResNet基本模块

ResNet的基本模块是Residual Block(残差块),它由两个或三个卷积层组成,以及跳跃连接。其中,两个卷积层的输出和输入相加后再经过一个非线性激活函数,形成最终的残差块输出。

以下是一个简化的Residual Block示意图:

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        # 跳跃连接
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )
        else:
            self.shortcut = nn.Sequential()

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += self.shortcut(identity)
        out = self.relu(out)

        return out

ResNet网络结构

ResNet的网络结构由多个Residual Block组成,其中包含了若干组不同层数的残差块。最常见的ResNet结构有ResNet-34和ResNet-50,表示网络深度的数字即指的是网络中Residual Block的数量。

以下是一个简化的ResNet-34结构示意图:

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_channels = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0], stride=1)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, channels, blocks, stride=1):
        layers = []
        layers.append(block(self.in_channels, channels, stride))
        self.in_channels = channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.maxpool(out)

        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        out = self.avgpool(out)
        out = torch.flatten(out, 1)
        out = self.fc(out)

        return out

ResNet的PyTorch实现教程

导入必要的库

在开始实现ResNet之前,我们首先需要导入必要的PyTorch库:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

定义超参数

接下来,我们定义一些超参数,包括训练轮数、批次大小、学习率等:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

num_epochs = 10
batch_size = 128
learning_rate = 0.001

准备数据集

我们使用CIFAR-10数据集来训练ResNet网络。PyTorch提供了一个方便的数据集类来加载CIFAR-10数据集,我们只需要指定数据集的根目录和预处理操作即可:

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
                                           shuffle=True, num_workers=2)

test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                            download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,
                                          shuffle=False, num_workers=2)

定义模型和损失函数

我们使用之前定义的ResNet结构来构建模型,并选择交叉熵损失函数和Adam优化器:

model = ResNet(ResidualBlock, [3, 4, 6, 3]).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

训练模型

接下来,我们开始训练模型。在每一个训练轮次中,我们依次遍历训练数据集,将输入数据和标签数据送入模型进行前向传播和反向传播,并更新模型参数。最后,我们在测试数据集上评估模型的准确率。

total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)

        outputs = model(images)
        loss = criterion(outputs, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

测试模型

最后,我们使用训练好的模型对测试数据集进行预测,并计算模型的准确率:

model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

结论

本文详细解读了ResNet的网络结构,并提供了基于PyTorch的实现教程。通过引入跳跃连接,ResNet解决了深层网络训练中的梯度消失问题,在众多计算机视觉任务中取得了出色的性能。希望本文能帮助读者更好地理解ResNet,并能够在实际应用中灵活运用。如有任何问题,请查阅官方文档或其他专业来源。

目录
相关文章
|
9天前
|
JavaScript 前端开发 网络安全
【网络安全 | 信息收集】JS文件信息收集工具LinkFinder安装使用教程
【网络安全 | 信息收集】JS文件信息收集工具LinkFinder安装使用教程
23 4
|
9天前
|
机器学习/深度学习 自然语言处理 PyTorch
使用Python实现循环神经网络(RNN)的博客教程
使用Python实现循环神经网络(RNN)的博客教程
40 1
|
1天前
|
存储 网络协议 Linux
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(下)
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(下)
|
1天前
|
存储 网络协议 安全
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(上)
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(上)
|
2天前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】
在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
|
4天前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 将backbone替换为MobileNetV3【小白必备教程+附完整代码】
本文介绍了将YOLOv5的backbone替换为MobileNetV3以提升目标检测性能的教程。MobileNetV3采用倒残差结构、Squeeze-and-Excitation模块和Hard-Swish激活函数,实现更高性能和更低计算成本。文中提供了详细的代码实现,包括MobileNetV3的关键组件和YOLOv5的配置修改,便于读者实践。此外,还分享了完整代码链接和进一步的进阶策略,适合深度学习初学者和进阶者学习YOLO系列。
|
7天前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
13 1
|
7天前
|
机器学习/深度学习 PyTorch 算法框架/工具
神经网络基本概念以及Pytorch实现,多线程编程面试题
神经网络基本概念以及Pytorch实现,多线程编程面试题
|
9天前
|
机器学习/深度学习 算法 Go
YOLOv5网络结构解析
YOLOv5网络结构解析
|
9天前
|
机器学习/深度学习 算法 PyTorch
卷积神经网络的结构组成与解释(详细介绍)
卷积神经网络的结构组成与解释(详细介绍)
33 0