深度学习第6天:ResNet深度残差网络

简介: 深度学习第6天:ResNet深度残差网络

什么是ResNet

ResNet是一种用于图像识别的深度残差网络,是卷积神经网络的一种重要模型,ResNet开创性地引入了残差连接,解决了深层网络在训练过程中梯度弥散的问题,使深层模型的训练更加简便,同时也验证了随着网络层次的加深模型能够获得更好的性能

模型结构

整体架构

ResNet有许多模型:如ResNet34, ResNet50,不过这些基本上都是根据层数来命名的,ResNet网络模型一般是开始有一层卷积层来提取图像特征,再经过池化,然后进入残差块中(ResNet的主要结构),最后再经过池化层与全连接层被输出出来,下图是一个ResNet34的模型示意图

残差块

下面是resnet的关键结构——残差块,它由两个卷积层和一个直连通路组成右侧曲线被称为直连通路,直连通路有助于解决梯度消失的问题,因为此时当神经网络反向传播求权重时,因为这个多项式即使前一部分的梯度消失了,后一部分还能保证梯度的存在

模型特性

  • 直连通路的存在使得模型可以保留原始数据信息,同时可以解决梯度弥散的问题(梯度消失)
  • 可以通过堆叠增加网络层数,不过当模型过于深时,性能可能下降,经原作者试验,在1000层左右的范围内,模型性能随层数增加而增加
  • 直连通路的结果与卷积层结果直接相加,使得模型在训练过程中只需要拟合不同层网络输出值与输入值的残差值,而无需直接拟合网络输出值,大大降低了模型学习的难度,有助于模型的收敛

示例代码

以下是一个简化的 ResNet 模型中,有以下主要组件:

  • 卷积层(Conv2D):模型开始的卷积层,用于提取图像特征。
  • 最大池化层(MaxPool):提取图像中显著的特征
  • 4 个残差块(residual_block):每个残差块包括两个卷积层。
  • 全局平均池化层(GlobalAveragePooling2D):用于将每个通道的特征平均化,产生一个固定大小的输出。
  • 全连接层(Dense):输出层,根据任务的不同可能有不同的神经元数量。
import tensorflow as tf
from tensorflow.keras import layers, Model
def residual_block(x, filters, kernel_size=3, stride=1, conv_shortcut=False):
    shortcut = x
    if conv_shortcut:
        shortcut = layers.Conv2D(filters, kernel_size=1, strides=stride, padding='same')(shortcut)
        shortcut = layers.BatchNormalization()(shortcut)
    x = layers.Conv2D(filters, kernel_size, strides=stride, padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    x = layers.Conv2D(filters, kernel_size, padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = layers.add([x, shortcut])
    x = layers.Activation('relu')(x)
    return x
def resnet(input_shape, num_classes=10):
    inputs = tf.keras.Input(shape=input_shape)
    x = layers.Conv2D(64, 7, strides=2, padding='same')(inputs)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    x = layers.MaxPooling2D(3, strides=2, padding='same')(x)
    x = residual_block(x, 64)
    x = residual_block(x, 64)
    x = residual_block(x, 128, stride=2)
    x = residual_block(x, 128)
    x = residual_block(x, 256, stride=2)
    x = residual_block(x, 256)
    x = residual_block(x, 512, stride=2)
    x = residual_block(x, 512)
    x = layers.GlobalAveragePooling2D()(x)
    x = layers.Dense(num_classes, activation='softmax')(x)
    model = Model(inputs, x)
    return model
# 创建ResNet模型
model = resnet(input_shape=(224, 224, 3), num_classes=1000)
# 打印模型概要
model.summary()

感谢阅读,觉得有用的话就订阅下《深度学习》专栏吧,有错误也欢迎指出

相关文章
|
20天前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
39 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
深度学习的魔法:如何用神经网络解决复杂问题
在这篇文章中,我们将探讨深度学习的基本原理和它在各种领域中的应用。通过一些实际的例子,我们将看到深度学习如何帮助我们解决复杂的问题,如图像识别、自然语言处理和推荐系统等。我们还将讨论一些最新的研究成果和技术趋势,以及深度学习在未来可能面临的挑战和机遇。
|
21天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
22天前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
44 0
|
5天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
18 7
|
6天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
14天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
44 1
|
15天前
|
机器学习/深度学习 算法 数据挖掘
【深度学习】经典的深度学习模型-02 ImageNet夺冠之作: 神经网络AlexNet
【深度学习】经典的深度学习模型-02 ImageNet夺冠之作: 神经网络AlexNet
24 2
|
19天前
|
机器学习/深度学习 边缘计算 算法
深度学习之进化神经网络设计
基于深度学习的进化神经网络设计(Evolutionary Neural Networks, ENNs)结合了进化算法(EA)和神经网络(NN)的优点,用于自动化神经网络架构的设计和优化。
26 1

热门文章

最新文章