【CNN回归预测】基于卷积神经网络的数据回归预测附matlab完整代码

简介: 【CNN回归预测】基于卷积神经网络的数据回归预测附matlab完整代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于卷积神经网络(Convolutional Neural Network,CNN)的数据回归预测是一种利用CNN模型来进行数据回归问题的预测和估计。以下是一种可能的实施步骤:

  1. 数据准备:收集和整理用于回归预测的数据集,包括输入特征和对应的目标值。确保数据集的质量和充分性。
  2. 数据预处理:对数据进行预处理,如归一化、标准化、特征工程等,以提高模型的训练效果和泛化能力。
  3. CNN模型设计:设计一个合适的卷积神经网络模型,通常包括卷积层、池化层、全连接层等。根据具体问题的特点,可以选择合适的网络结构和超参数。
  4. 模型训练:使用准备好的数据集对CNN模型进行训练。通过反向传播算法和优化器(如梯度下降)来最小化预测值与真实值之间的损失函数,以更新模型的权重和偏置。
  5. 模型评估:使用测试数据集对训练好的CNN模型进行评估,计算预测结果与真实值之间的误差指标,如均方误差(Mean Squared Error,MSE)、均方根误差(Root Mean Squared Error,RMSE)等。
  6. 预测与推断:使用训练好的CNN模型对新的输入数据进行预测和推断,得到回归预测结果。
  7. 模型优化:根据评估结果和实际需求,对CNN模型进行优化和调整,如调整网络结构、增加正则化手段、调整学习率等,以提高模型的性能和精度。
  8. 模型应用:将优化后的CNN模型应用于实际场景中,进行数据回归预测和估计。

基于卷积神经网络的数据回归预测可以应用于各种领域,如图像处理、自然语言处理、时间序列分析等,以实现对复杂数据关系的准确预测和估计。

⛄ 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';T_train = res(temp(1: 80), 8)';M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';T_test = res(temp(81: end), 8)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺%   将数据平铺成1维数据只是一种处理方式%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构%   但是应该始终和输入层数据结构保持一致p_train =  double(reshape(p_train, 7, 1, 1, M));p_test  =  double(reshape(p_test , 7, 1, 1, N));t_train =  double(t_train)';t_test  =  double(t_test )';%%  构造网络结构layers = [ imageInputLayer([7, 1, 1])                         % 输入层 输入数据规模[7, 1, 1]  convolution2dLayer([3, 1], 16, 'Padding', 'same')  % 卷积核大小 3*1 生成16张特征图 batchNormalizationLayer                            % 批归一化层 reluLayer                                          % Relu激活层  maxPooling2dLayer([2, 1], 'Stride', [1, 1])        % 最大池化层 池化窗口 [2, 1] 步长 [1, 1] convolution2dLayer([3, 1], 32, 'Padding', 'same')  % 卷积核大小 3*1 生成32张特征图 batchNormalizationLayer                            % 批归一化层 reluLayer                                          % Relu激活层 dropoutLayer(0.1)                                  % Dropout层 fullyConnectedLayer(1)                             % 全连接层 regressionLayer];                                  % 回归层%%  参数设置options = trainingOptions('sgdm', ...      % SGDM 梯度下降算法    'MiniBatchSize', 32, ...               % 批大小,每次训练样本个数 32    'MaxEpochs', 1200, ...                 % 最大训练次数 1200    'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01    'LearnRateSchedule', 'piecewise', ...  % 学习率下降    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子    'LearnRateDropPeriod', 800, ...        % 经过 800 次训练后 学习率为 0.01 * 0.1    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集    'Plots', 'training-progress', ...      % 画出曲线    'Verbose', false);%%  训练模型net = trainNetwork(p_train, t_train, layers, options);%%  模型预测t_sim1 = predict(net, p_train);t_sim2 = predict(net, p_test );%%  数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  绘制网络分析图analyzeNetwork(layers)%%  绘图figureplot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};title(string)xlim([1, N])grid%%  相关指标计算% R2R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% MAEmae1 = sum(abs(T_sim1' - T_train)) ./ M ;mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% MBEmbe1 = sum(T_sim1' - T_train) ./ M ;mbe2 = sum(T_sim2' - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])%%  绘制散点图sz = 25;c = 'b';figurescatter(T_train, T_sim1, sz, c)hold onplot(xlim, ylim, '--k')xlabel('训练集真实值');ylabel('训练集预测值');xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])title('训练集预测值 vs. 训练集真实值')figurescatter(T_test, T_sim2, sz, c)hold onplot(xlim, ylim, '--k')xlabel('测试集真实值');ylabel('测试集预测值');xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

⛄ 参考文献

[1] 郝霖霖.基于混合数据输入的体脂率预测模型的青年男性体脂率预测方法:CN202110506558.7[P].CN202110506558.7[2023-07-15].

[2] 赵辉,杨赛,岳有军,等.基于小波分解-卷积神经网络和支持向量回归的短期负荷预测[J].科学技术与工程, 2021, 21(25):7.

[3] 江婧,张怀峰,皮德常.基于卷积神经网络的移动对象目的地预测[J].小型微型计算机系统, 2019, 40(12):7.DOI:CNKI:SUN:XXWX.0.2019-12-009.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长


相关文章
|
2天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
13 4
|
2天前
|
机器学习/深度学习 监控 自动驾驶
【传知代码】从零开始搭建图像去雾神经网络-论文复现
本文介绍了基于集成学习的双分支非均匀去雾神经网络的复现,该网络由迁移学习子网和数据拟合子网组成,分别处理全局表示和数据拟合。网络使用Res2Net作为编码器,并结合通道和像素注意力模块。代码可在提供的链接下载。网络在交通监控、自动驾驶、航海和目标跟踪等领域有广泛应用,通过提升图像质量来提高系统性能。实验在O-Haze、I-Haze和NH-Haze数据集上进行,展示了网络在去除雾霾方面的效果,尽管存在细节模糊和色彩饱和度低的问题。
|
2天前
|
机器学习/深度学习 自然语言处理 搜索推荐
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
【传知代码】图神经网络长对话理解-论文复现
|
11天前
|
机器学习/深度学习 算法 数据挖掘
深度学习500问——Chapter05: 卷积神经网络(CNN)(4)
深度学习500问——Chapter05: 卷积神经网络(CNN)(4)
21 1
|
11天前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习500问——Chapter05: 卷积神经网络(CNN)(3)
深度学习500问——Chapter05: 卷积神经网络(CNN)(3)
19 1
|
11天前
|
机器学习/深度学习 存储 算法
卷积神经网络(CNN)的数学原理解析
卷积神经网络(CNN)的数学原理解析
45 1
卷积神经网络(CNN)的数学原理解析
|
11天前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习500问——Chapter05: 卷积神经网络(CNN)(2)
深度学习500问——Chapter05: 卷积神经网络(CNN)(2)
25 2
|
11天前
|
机器学习/深度学习 算法 PyTorch
卷积神经网络(CNN)——基础知识整理
卷积神经网络(CNN)——基础知识整理
38 2
|
11天前
|
机器学习/深度学习 存储 自然语言处理
深度学习500问——Chapter05: 卷积神经网络(CNN)(1)
深度学习500问——Chapter05: 卷积神经网络(CNN)(1)
29 1
|
11天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章