基于PSO优化的SVM数据预测算法matlab仿真

简介: 基于PSO优化的SVM数据预测算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

cc88e554f031046fd5b996a9fde094ad_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5a2856ebb590264f1ffc3589c63a52b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
82ea8b8c6dcfc443d8d0c00349b39c20_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
支持向量机(support vector machines, SVM)是二分类算法,所谓二分类即把具有多个特性(属性)的数据分为两类,目前主流机器学习算法中,神经网络等其他机器学习模型已经能很好完成二分类、多分类,学习和研究SVM,理解SVM背后丰富算法知识,对以后研究其他算法大有裨益;在实现SVM过程中,会综合利用之前介绍的一维搜索、KKT条件、惩罚函数等相关知识。本篇首先通过详解SVM原理,后介绍如何利用python从零实现SVM算法。
实例中样本明显的分为两类,黑色实心点不妨为类别一,空心圆点可命名为类别二,在实际应用中会把类别数值化,比如类别一用1表示,类别二用-1表示,称数值化后的类别为标签。每个类别分别对应于标签1、还是-1表示没有硬性规定,可以根据自己喜好即可,需要注意的是,由于SVM算法标签也会参与数学运算,这里不能把类别标签设为0。

a06daf236a6f429ff05555220816b829_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

线性核:
主要用于线性可分的情况,我们可以看到特征空间到输入空间的维度是一样的,其参数少速度快,对于线性可分数据,其分类效果很理想
通常首先尝试用线性核函数来做分类,看看效果如何,如果不行再换别的
优点:方案首选、简单、可解释性强:可以轻易知道哪些feature是重要的
缺点:只能解决线性可分的问题

高斯核:

通过调控参数,高斯核实际上具有相当高的灵活性,也是使用最广泛的核函数之一。
如果σ \sigmaσ选得很大的话,高次特征上的权重实际上衰减得非常快,所以实际上(数值上近似一下)相当于一个低维的子空间;
如果σ \sigmaσ选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。
优点:可以映射到无限维、决策边界更为多维、只有一个参数
缺点:可解释性差、计算速度慢、容易过拟合

多项式核

多项式核函数可以实现将低维的输入空间映射到高纬的特征空间,
但是多项式核函数的参数多
当多项式的阶数比较高的时候,核矩阵的元素值将趋于无穷大或者无穷小,计算复杂度会大到无法计算。
优点:可解决非线性问题、主观设置
缺点:多参数选择、计算量大
sigmoid核

采用sigmoid核函数,支持向量机实现的就是只包含一个隐层,激活函数为 Sigmoid 函数的神经网络。
应用SVM方法,隐含层节点数目(它确定神经网络的结构)、隐含层节点对输入节点的权值都是在设计(训练)的过程中自动确定的。
而且支持向量机的理论基础决定了它最终求得的是全局最优值而不是局部最小值,也保证了它对于未知样本的良好泛化能力而不会出现过学习现象。
如图, 输入层->隐藏层之间的权重是每个支撑向量,隐藏层的计算结果是支撑向量和输入向量的内积,隐藏层->输出层之间的权重是支撑向量对应的

3.MATLAB核心程序
```Vcmax = pso_option.kpso_option.popcmax;
Vcmin = -Vcmax ;
Vgmax = pso_option.k
pso_option.popgmax;
Vgmin = -Vgmax ;
%% 产生初始粒子和速度
for i=1:pso_option.sizepop
% 随机产生种群和速度
pop(i,1) = (pso_option.popcmax-pso_option.popcmin)rand+pso_option.popcmin;
pop(i,2) = (pso_option.popgmax-pso_option.popgmin)
rand+pso_option.popgmin;
V(i,1)=Vcmaxrands(1,1);
V(i,2)=Vgmax
rands(1,1);

% 计算初始适应度
fitness(i)=fit_function(pop(i,:),X,Y,Xt,Yt);

end

% 找极值和极值点
[global_fitness bestindex]=min(fitness); % 全局极值
local_fitness=fitness; % 个体极值初始化

global_x=pop(bestindex,:); % 全局极值点
local_x=pop; % 个体极值点初始化

% 每一代种群的平均适应度
avgfitness_gen = zeros(1,pso_option.maxgen);

%% 迭代寻优
for i=1:pso_option.maxgen

for j=1:pso_option.sizepop

    %速度更新
    V(j,:) = pso_option.wV*V(j,:) + pso_option.c1*rand*(local_x(j,:) - pop(j,:)) + pso_option.c2*rand*(global_x - pop(j,:));
    % 边界判断
    if V(j,1) > Vcmax
        V(j,1) = Vcmax;
    end
    if V(j,1) < Vcmin
        V(j,1) = Vcmin;
    end
    if V(j,2) > Vgmax
        V(j,2) = Vgmax;
    end
    if V(j,2) < Vgmin
        V(j,2) = Vgmin;
    end

    %种群更新
    pop(j,:)=pop(j,:) + pso_option.wP*V(j,:);
    %边界判断
    if pop(j,1) > pso_option.popcmax
        pop(j,1) = pso_option.popcmax;
    end
    if pop(j,1) < pso_option.popcmin
        pop(j,1) = pso_option.popcmin;
    end
    if pop(j,2) > pso_option.popgmax
        pop(j,2) = pso_option.popgmax;
    end
    if pop(j,2) < pso_option.popgmin
        pop(j,2) = pso_option.popgmin;
    end

    % 自适应粒子变异
    if rand>0.8
        k=ceil(2*rand);
        if k == 1
            pop(j,k) = (pso_option.popgmax-pso_option.popgmin)*rand + pso_option.popgmin;
        end
        if k == 2
            pop(j,k) = (pso_option.popgmax-pso_option.popgmin)*rand + pso_option.popgmin;
        end
    end

    %适应度值
    fitness(j)=   fit_function(pop(j,:),X,Y,Xt,Yt);

    %个体最优更新
    if fitness(j) < local_fitness(j)
        local_x(j,:) = pop(j,:);
        local_fitness(j) = fitness(j);
    end

    if fitness(j) == local_fitness(j) && pop(j,1) < local_x(j,1)
        local_x(j,:) = pop(j,:);
        local_fitness(j) = fitness(j);
    end

    %群体最优更新
    if fitness(j) < global_fitness
        global_x = pop(j,:);
        global_fitness = fitness(j);
    end
end

fit_gen(i)=global_fitness;
avgfitness_gen(i) = sum(fitness)/pso_option.sizepop;

end
```

相关文章
|
6天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
15天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
15天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
15天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
20天前
|
存储 编解码 负载均衡
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。
|
20天前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章

下一篇
无影云桌面