m基于低复杂度高性能BP译码算法的LDPC编译码性能matlab仿真

简介: m基于低复杂度高性能BP译码算法的LDPC编译码性能matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

ba6c6119eac925637fb0338b58f4f151_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f65f82fc9ee704eaeb5e2ce16f845ff7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6d575ee5787135ba833b4676a1d9a157_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6eea74c7c8ec7641916e626c681c598d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
478c61fba9d7a0b7db736de2d5cbf59a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1abf67fdeea91b41fd5f3f0fa4bc5ac1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
LDPC码是麻省理工学院Robert Gallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现简单,易于进行理论分析和研究,译码简单且可实行并行操作,适合硬件实现。

    LDPC ( Low-density Parity-check,低密度奇偶校验)码是由 Gallager 在1963 年提出的一类具有稀疏校验矩阵的线性分组码 (linear block codes),然而在接下来的 30 年来由于计算能力的不足,它一直被人们忽视。1996年,D MacKay、M Neal 等人对它重新进行了研究,发现 LDPC 码具有逼近香农极限的优异性能。并且具有译码复杂度低、可并行译码以及译码错误的可检测性等特点,从而成为了信道编码理论新的研究热点。Mckay ,Luby 提出的非正则 LDPC 码将 LDPC 码的概念推广。非正则LDPC码 的性能不仅优于正则 LDPC 码,甚至还优于 Turbo 码的性能,是目前己知的最接近香农限的码。Richardson 和 Urbank 也为 LDPC 码的发展做出了巨大的贡献。首先,他们提出了一种新的编码算法,在很大程度上减轻了随机构造的 LDPC 码在编码上的巨大运算量需求和存储量需求。其次,他们发明了密度演进理论,能够有效的分析出一大类 LDPC 译码算法的译码门限。仿真结果表明,这是一个紧致的译码门限。最后,密度演进理论还可以用于指导非正则 LDPC码 的设计,以获得尽可能优秀的性能。

    在 LDPC 码的 Tanner 图中,从一个顶点出发,经过不同顶点后回到同一个顶点的一些“边”组成的回路称为“环”。经过的边的个数称为环的长度。所有环中周长最小的环称为 LDPC码的围长(girth) ‎。Tanner 图中的环不可避免的会对译码结果造成非常大的干扰。由于迭代概率译码会使信息在节点间交互传递,若存在环,从环的某一个节点出发的信息会沿着环上的节点不断传递并最终重新回到这个节点本身,从而使得节点自身信息不断累加,进而使得译码的最终结果失败的概率变大。显然,环长越小,信息传递回本身所需走的路径就越短,译码失败的概率就变得越高。Tanner 图形成一个环至少需要 4 个节点组成4 条相连的边,即环长最小为4,这类短环对码字的译码结果干扰最大。定义 LDPC码的行列(RC)约束为:两行或两列中不存在元素 1 的位置有 1 个以上相同的情况。显然,满足 RC 约束的 LDPC 码最低就是 6 环,去除了4 环的干扰。由于4环的检测以及避免最为简单并且必要,因此绝大部分构造方法都会满足 RC 约束。而构造大圈长的码字则需要精确的设计。

    LDPC仿真系统图LDPC 码的奇偶校验矩阵H是一个稀疏矩阵,相对于行与列的长度,校验矩阵每行、列中非零元素的数目(我们习惯称作行重、列重)非常小,这也是LDPC码之所以称为低密度码的原因。由于校验矩阵H的稀疏性以及构造时所使用的不同规则,使得不同LDPC码的编码二分图(Taner图)具有不同的闭合环路分布。而二分图中闭合环路是影响LDPC码性能的重要因素,它使得LDPC码在类似可信度传播(Belief ProPagation)算法的一类迭代译码算法下,表现出完全不同的译码性能。
   当H的行重和列重保持不变或尽可能的保持均匀时,我们称这样的LDPC码为正则LDPC码,反之如果列、行重变化差异较大时,称为非正则的LDPC码。研究结果表明正确设计的非正则LDPC码的性能要优于正则LDPC。根据校验矩阵H中的元素是属于GF(2)还是GF(q)(q=2p),我们还可以将LDPC码分为二元域或多元域的LDPC码。研究表明多元域LDPC码的性能要比二元域的好。

   在LDPC编码中,会用到一个叫做H矩阵的校验矩阵(Parity Check Matrix),比如,我们来看一个简单的H矩阵:
AI 代码解读

6bd643378b47cfc95f2196d5d2470138_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    LLRBP算法较为复杂,因此,我们考虑改进算法的复杂度,加快算法仿真速度。具体方法如下所示:

   这里,在改进算法复杂度方面,主要从tanh方面入手,因为tanh计算在硬件实现方面非常复杂,所以这里通过泰勒展开式,并近似的选择泰勒展开式的前几项作为近似计算公式进行计算,从而降低复杂度。。
AI 代码解读

ac7c457a872cc936c532cc44994884c7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   这个地方改进的含义是计算信道传递给变量节点的初始概率似然比信息。
AI 代码解读

传统的LLRBP算法,其计算是通过这个似然比得到的,

而改进后的算法,通过似然比和变量节点信息的差作为校验节点信息的输入。

    另外一方面,在校验节点计算过程中,根据变量节点传递给校验节点的信息的值,选择不同的校验节点信息的计算公式:具体如下所示:
AI 代码解读

首先取

8358e6ce2227be0694bd2714d36ac12c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

通过这么处理,可以有效减小变量节点之间信息的相关性,提高译码性能。

3.MATLAB核心程序
```Times = [5000,3000,1000,400,200,50,30];
EbN0_dB = [0.5:1:5.5];
max_iter = 15;

load GH.mat
[N,M] = size(H);
R = 1-N/M;

disp('Start......');
for i=1:length(EbN0_dB)

Bit_err(i) = 0;
Num_err    = 0;
Numbers    = 0; %误码率累加器

EbN0 = 10^(EbN0_dB(i)/10);    % 比特信噪比,十进制表示
sigma = 1/sqrt(2*EbN0);   % 求出方差值
while Num_err <= Times(i);
      Num_err
      fprintf('Eb/N0 = %f\n', EbN0_dB(i));
      Trans_data = round(rand(1,M-N));  %产生需要发送的随机数
      ldpc_code  = mod(Trans_data*G,2); %LDPC编码
      Trans_BPSK = 2*ldpc_code-1;       %BPSK

      %通过高斯信道
      Rec_BPSK = Trans_BPSK + sigma*randn(size(Trans_BPSK));

      z_hat    = func_LLRBP(Rec_BPSK,sigma,H,max_iter) ;

      x_hat    = z_hat(size(G,2)+1-size(G,1):size(G,2));

     [nberr,rat]  = biterr(x_hat,Trans_data);
      Num_err     = Num_err+nberr;
      Numbers     = Numbers+1;    
end 
Bit_err(i)=Num_err/(length(Trans_data)*Numbers);
AI 代码解读

end

figure;
semilogy(EbN0_dB,Bit_err,'b-o');
xlabel('Eb/N0(dB)');
ylabel('BER');
grid on;

% save R1.mat EbN0 Bit_err
```

目录
打赏
0
0
0
0
238
分享
相关文章
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
104 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等