首个目标检测扩散模型,比Faster R-CNN、DETR好,从随机框中直接检测

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 首个目标检测扩散模型,比Faster R-CNN、DETR好,从随机框中直接检测

编辑:杜伟、陈萍

扩散模型不但在生成任务上非常成功,这次在目标检测任务上,更是超越了成熟的目标检测器。


扩散模型( Diffusion Model )作为深度生成模型中的新 SOTA,已然在图像生成任务中超越了原 SOTA:例如 GAN,并且在诸多应用领域都有出色的表现,如计算机视觉,NLP、分子图建模、时间序列建模等。


近日,来自香港大学的罗平团队、腾讯 AI Lab 的研究者联合提出一种新框架 DiffusionDet,将扩散模型应用于目标检测。据了解,还没有研究可以成功地将扩散模型应用于目标检测,可以说这是第一个采用扩散模型进行目标检测的工作。


DiffusionDet 的性能如何呢?在 MS-COCO 数据集上进行评估,使用 ResNet-50 作为骨干,在单一采样 step 下,DiffusionDet 实现 45.5 AP,显著优于 Faster R-CNN (40.2 AP), DETR (42.0 AP),并与 Sparse R-CNN (45.0 AP)相当。通过增加采样 step 的数量,进一步将 DiffusionDet 性能提高到 46.2 AP。此外,在 LVIS 数据集上,DiffusionDet 也表现良好,使用 swing - base 作为骨干实现了 42.1 AP。




该研究发现在传统的目标检测里,存在一个缺陷,即它们依赖于一组固定的可学习查询。然后研究者就在思考:是否存在一种简单的方法甚至不需要可学习查询就能进行目标检测?


为了回答这一问题,本文提出了 DiffusionDet,该框架可以直接从一组随机框中检测目标,它将目标检测制定为从噪声框到目标框的去噪扩散过程。这种从 noise-to-box 的方法不需要启发式的目标先验,也不需要可学习查询,这进一步简化了目标候选,并推动了检测 pipeline 的发展。


如下图 1 所示,该研究认为 noise-to-box 范式类似于去噪扩散模型中的 noise-to-image 过程,后者是一类基于似然的模型,通过学习到的去噪模型逐步去除图像中的噪声来生成图像。


DiffusionDet 通过扩散模型解决目标检测任务,即将检测看作图像中 bounding box 位置 (中心坐标) 和大小 (宽度和高度) 空间上的生成任务。在训练阶段,将方差表(schedule)控制的高斯噪声添加到 ground truth box,得到 noisy box。然后使用这些 noisy box 从主干编码器(如 ResNet, Swin Transformer)的输出特征图中裁剪感兴趣区域(RoI)。最后,将这些 RoI 特征发送到检测解码器,该解码器被训练用来预测没有噪声的 ground truth box。在推理阶段,DiffusionDet 通过反转学习到的扩散过程生成 bounding box,它将噪声先验分布调整到 bounding box 上的学习分布。


方法概述


由于扩散模型迭代地生成数据样本,因此在推理阶段需要多次运行模型 f_θ。但是,在每一个迭代步骤中,直接在原始图像上应用 f_θ在计算上很困难。因此,研究者提出将整个模型分为两部分,即图像编码器和检测解码器,前者只运行一次以从原始输入图像 x 中提取深度特征表示,后者以该深度特征为条件,从噪声框 z_t 中逐步细化框预测。


图像编码器将原始图像作为输入,并为检测解码器提取其高级特征。研究者使用 ResNet 等卷积神经网络和 Swin 等基于 Transformer 的模型来实现 DiffusionDet。与此同时,特征金字塔网络用于为 ResNet 和 Swin 主干网络生成多尺度特征图。


检测解码器借鉴了 Sparse R-CNN,将一组 proposal 框作为输入,从图像编码器生成的特征图中裁剪 RoI 特征,并将它们发送到检测头以获得框回归和分类结果。此外,该检测解码器由 6 个级联阶段组成。


训练


在训练过程中,研究者首先构建了从真值框到噪声框的扩散过程,然后训练模型来反转这个过程。如下算法 1 提供了 DiffusionDet 训练过程的伪代码。


真值框填充。对于现代目标检测基准,感兴趣实例的数量通常因图像而异。因此,研究者首先将一些额外的框填充到原始真值框,这样所有的框被总计为一个固定的数字 N_train。他们探索了几种填充策略,例如重复现有真值框、连接随机框或图像大小的框。


框损坏。研究者将高斯噪声添加到填充的真值框。噪声尺度由如下公式(1)中的 α_t 控制,它在不同的时间步 t 中采用单调递减的余弦调度。


训练损失。检测解码器将 N_train 损坏框作为输入,预测 N_train 对类别分类和框坐标的预测。同时在 N_train 预测集上应用集预测损失(set prediction loss)。


推理


DiffusionDet 的推理过程是从噪声到目标框的去噪采样过程。从在高斯分布中采样的框开始,该模型逐步细化其预测,具体如下算法 2 所示。


采样步骤。在每个采样步骤中,将上一个采样步骤中的随机框或估计框发送到检测解码器,以预测类别分类和框坐标。在获得当前步骤的框后,采用 DDIM 来估计下一步骤的框。


框更新。为了使推理更好地与训练保持一致,研究者提出了框更新策略,通过用随机框替换非预期的框以使它们恢复。具体来说,他们首先过滤掉分数低于特定阈值的非预期的框,然后将剩余的框与从高斯分布中采样的新随机框连接起来。


一次解决(Once-for-all)。得益于随机框设计,研究者可以使用任意数量的随机框和采样步骤来评估 DiffusionDet。作为比较,以往的方法在训练和评估期间依赖于相同数量的处理框,并且检测解码器在前向传递中仅使用一次。


实验结果


在实验部分,研究者首先展示了 DiffusionDet 的 Once-for-all 属性,然后将 DiffusionDet 与以往在 MS-COCO 和 LVIS 数据集上成熟的检测器进行比较。


DiffusionDet 的主要特性在于对所有推理实例进行一次训练。一旦模型经过训练,它就可以用于更改推理中框的数量和样本步骤数,如下图 4 所示。DiffusionDet 可以通过使用更多框或 / 和更多细化步骤来实现更高的准确度,但代价是延迟率更高。因此,研究者将单个 DiffusionDet 部署到多个场景中,并在不重新训练网络的情况下获得所需的速度 - 准确率权衡。


研究者将 DiffusionDet 与以往在 MS-COCO 和 LVIS 数据集上的检测器进行了比较,具体如下表 1 所示。他们首先将 DiffusionDet 的目标检测性能与以往在 MS-COCO 上的检测器进行了比较。结果显示,没有细化步骤的 DiffusionDet 使用 ResNet-50 主干网络实现了 45.5 AP,以较大的优势超越了以往成熟的方法,如 Faster R-CNN、RetinaNet、DETR 和 Sparse R-CNN。并且当主干网络的尺寸扩大时,DiffusionDet 显示出稳定的提升。


下表 2 中展示了在更具挑战性的 LVIS 数据集上的结果,可以看到,DiffusionDet 使用更多的细化步骤可以获得显著的增益。


更多实验细节请参阅原论文。


亚马逊云科技「深度学习实战训练营」即将开营


对于刚入行的开发者来说,上手深度学习并不总是一件容易的事。

想要短期提升上手能力?机器之心联合亚马逊云科技开设《深度学习实战训练营》线上实战营。实战营为期 3 周,共 6 次课程,还有 6 次课后作业,实战营期间讲师将在答疑群中随时解决同学的疑问,全程免费,欢迎希望上手实操深度学习的同学加入学习。

11月22日开营,关于课后答疑、作业与奖励欢迎进群了解,最后附上详细课程安排。

相关文章
|
12天前
|
机器学习/深度学习 人工智能 编解码
【AI系统】轻量级CNN模型新进展
本文继续探讨CNN模型的小型化,涵盖ESPNet、FBNet、EfficientNet和GhostNet系列。ESPNet系列通过高效空间金字塔卷积减少运算量;FBNet系列采用基于NAS的轻量化网络设计;EfficientNet系列通过复合缩放方法平衡网络深度、宽度和分辨率;GhostNet系列则通过Ghost模块生成更多特征图,减少计算成本。各系列均旨在提升模型效率和性能,适用于移动和边缘设备。
31 6
|
12天前
|
机器学习/深度学习 存储 人工智能
【AI系统】轻量级CNN模型综述
本文介绍了几种常见的小型化CNN模型,包括SqueezeNet、ShuffleNet、MobileNet等系列。这些模型通过减少参数量和计算量,实现在有限资源下高效运行,适用于存储和算力受限的场景。文章详细解释了各模型的核心技术和优化策略,如Fire Module、Channel Shuffle、Depthwise Separable Convolutions等,旨在帮助读者理解和应用这些高效的小型化CNN模型。
25 3
|
2月前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
47 0
|
3月前
|
机器学习/深度学习
ACM MM24:复旦提出首个基于扩散模型的视频非限制性对抗攻击框架,主流CNN和ViT架构都防不住它
【9月更文挑战第23天】复旦大学研究团队提出了ReToMe-VA,一种基于扩散模型的视频非限制性对抗攻击框架,通过时间步长对抗性潜在优化(TALO)与递归令牌合并(ReToMe)策略,实现了高转移性且难以察觉的对抗性视频生成。TALO优化去噪步骤扰动,提升空间难以察觉性及计算效率;ReToMe则确保时间一致性,增强帧间交互。实验表明,ReToMe-VA在攻击转移性上超越现有方法,但面临计算成本高、实时应用受限及隐私安全等挑战。[论文链接](http://arxiv.org/abs/2408.05479)
84 3
|
4月前
|
机器学习/深度学习
CNN模型验证和CNN模型保存
【8月更文挑战第10天】CNN模型验证和CNN模型保存。
68 27
|
4月前
|
机器学习/深度学习
加载CNN保存模型
【8月更文挑战第10天】加载CNN保存模型。
46 12
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
166 9
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
71 7
|
19天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
27 1

热门文章

最新文章