Ruyi:图森未来推出的图生视频大模型,支持多分辨率、多时长视频生成,具备运动幅度和镜头控制等功能

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: Ruyi是图森未来推出的图生视频大模型,专为消费级显卡设计,支持多分辨率、多时长视频生成,具备首帧、首尾帧控制、运动幅度控制和镜头控制等特性。Ruyi基于DiT架构,能够降低动漫和游戏内容的开发周期和成本,是ACG爱好者和创作者的理想工具。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持多分辨率、多时长视频生成,具备首帧、首尾帧控制、运动幅度控制和镜头控制。
  2. 技术:基于DiT架构,由Casual VAE模块和Diffusion Transformer组成,支持视频数据压缩和生成。
  3. 应用:适用于动画预制、游戏CG生成、电影特效预览、虚拟主播和社交媒体内容生成。

正文(附运行示例)

Ruyi 是什么

公众号: 蚝油菜花 - Ruyi-Models

Ruyi是图森未来推出的图生视频大模型,专为在消费级显卡上运行设计,支持多分辨率、多时长视频生成,具备首帧、首尾帧控制、运动幅度控制和镜头控制等特性。Ruyi基于DiT架构,由Casual VAE模块和Diffusion Transformer组成,用在视频数据压缩和生成。

Ruyi能降低动漫和游戏内容的开发周期和成本,是ACG爱好者和创作者的理想工具。目前图森未来将Ruyi-Mini-7B版本正式开源。

Ruyi 的主要功能

  • 多分辨率、多时长生成:支持从最小384×384到最大1024×1024分辨率的视频生成,能处理任意长宽比,最长生成120帧/5秒的视频。
  • 首帧、首尾帧控制生成:基于最多5个起始帧和最多5个结束帧生成视频,用循环叠加生成任意长度的视频。
  • 运动幅度控制:提供4档运动幅度控制,方便用户对整体画面的变化程度进行控制。
  • 镜头控制:提供了上、下、左、右、静止共5种镜头控制,增加视频生成的灵活性。

Ruyi 的技术原理

  • 模型架构:Ruyi基于DiT(Diffusion Model with Transformers)架构,由两部分组成:
  • Casual VAE模块:负责视频数据的压缩和解压。
  • Diffusion Transformer:负责压缩后的视频生成。
  • 压缩与编码:Casual VAE模块将空间分辨率压缩至1/8,时间分辨率压缩至1/4,压缩后每个像素由16位的BF16进行表示。
  • 位置编码:DiT部分用3D full attention,在空间上使用2D RoPE(Rotary Positional Encoding)进行位置编码,时间上用sin_cos进行位置编码。
  • 训练损失函数:最终的loss选用DDPM(Denoising Diffusion Probabilistic Models)进行训练。
  • 参数量与训练数据:模型的总参数量约为7.1B,用约200M视频片段进行训练。
  • 训练阶段:整个训练分为四个阶段,从低分辨率预训练到高分辨率微调,逐步提升模型性能。

如何运行 Ruyi

安装步骤

  1. 克隆仓库并安装依赖:

    git clone https://github.com/IamCreateAI/Ruyi-Models
    cd Ruyi-Models
    pip install -r requirements.txt
    
  2. 对于ComfyUI用户,可以通过ComfyUI Manager安装:

    cd ComfyUI/custom_nodes/
    git clone https://github.com/ltdrdata/ComfyUI-Manager.git
    pip install -r ComfyUI-Manager/requirements.txt
    
  3. 下载模型并保存到指定路径:

    python3 predict_i2v.py
    

运行示例

以下是一个简单的运行示例,使用Python代码生成视频:

python3 predict_i2v.py

该脚本会自动下载模型并使用_assets_文件夹中的图片作为起始和结束帧进行视频推理。你可以修改脚本中的变量来替换输入图片,并设置视频长度和分辨率等参数。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
10月前
|
编解码 人工智能
1980 年至今全球高分辨率降水分析(0.5度) 空间分辨率
1980 年至今全球高分辨率降水分析(0.5度) 空间分辨率
116 0
1980 年至今全球高分辨率降水分析(0.5度) 空间分辨率
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
VideoGrain:零样本多粒度视频编辑神器,用AI完成换装改场景,精准控制每一帧!
VideoGrain 是悉尼科技大学和浙江大学推出的零样本多粒度视频编辑框架,基于调节时空交叉注意力和自注意力机制,实现类别级、实例级和部件级的精细视频修改,保持时间一致性,显著优于现有方法。
52 0
VideoGrain:零样本多粒度视频编辑神器,用AI完成换装改场景,精准控制每一帧!
|
5月前
|
编解码 监控 算法
高动态范围成像:超越人眼的视觉体验
【10月更文挑战第15天】高动态范围成像(HDR)通过捕捉更广泛的亮度范围,超越传统图像和人眼的极限,提供卓越的视觉体验。本文深入解析HDR的基本原理、技术特点及其在摄影、电影、游戏、医学影像和工业检测等领域的广泛应用,展现其引领视觉技术革命的独特魅力。
|
7月前
|
机器学习/深度学习 人工智能 API
FaceChain-FACT:免训练的丝滑体验,秒级别的人像生成
FaceChain-FACT是一项创新技术,它通过免训练的方式,能在10秒内生成高质量的AI人像,为用户带来快速且逼真的肖像生成体验。
FaceChain-FACT:免训练的丝滑体验,秒级别的人像生成
|
7月前
|
图形学 开发者
【Unity光照艺术手册】掌握这些技巧,让你的游戏场景瞬间提升档次:从基础光源到全局光照,打造24小时不间断的视觉盛宴——如何运用代码与烘焙创造逼真光影效果全解析
【8月更文挑战第31天】在Unity中,合理的光照与阴影设置对于打造逼真环境至关重要。本文介绍Unity支持的多种光源类型,如定向光、点光源、聚光灯等,并通过具体示例展示如何使用着色器和脚本控制光照强度,模拟不同时间段的光照变化。此外,还介绍了动态和静态阴影、全局光照及光照探针等高级功能,帮助开发者创造丰富多样的光影效果,提升游戏沉浸感。
207 0
|
算法 搜索推荐
串稳定混合交通的协同自适应巡航控制:基准和以人为本的设计(Matlab代码实现)
串稳定混合交通的协同自适应巡航控制:基准和以人为本的设计(Matlab代码实现)
103 0
|
10月前
|
机器学习/深度学习 API 计算机视觉
视觉智能平台常见问题之使用智能分镜功能拆分镜头丢失部分镜头如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
182 0
|
机器学习/深度学习 传感器 算法
【图像重建】在线全息图的迭代双图像自由重建附matlab代码
【图像重建】在线全息图的迭代双图像自由重建附matlab代码
|
算法 计算机视觉
一种新的基于区域的在线活动轮廓模型研究(Matlab代码实现)
一种新的基于区域的在线活动轮廓模型研究(Matlab代码实现)
107 0
|
机器学习/深度学习 传感器 人工智能
无需大量神经元,用神经形态机器人玩桌上足球,兼具速度与准确率
无需大量神经元,用神经形态机器人玩桌上足球,兼具速度与准确率
123 0

热门文章

最新文章