基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

机器之心编辑部细粒度图像识别 [1] 是视觉感知学习的重要研究课题,在智能新经济和工业互联网等方面具有巨大应用价值,且在诸多现实场景已有广泛应用…… 鉴于当前领域内尚缺乏该方面的深度学习开源工具库,南京理工大学魏秀参教授团队用时近一年时间,开发、打磨、完成了 Hawkeye——细粒度图像识别深度学习开源工具库,供相关领域研究人员和工程师参考使用。本文是对 Hawkeye 的详细介绍。


目录


1. 什么是 Hawkeye 库

2. Hawkeye 支持的模型及方法

3. 安装 Hawkeye

4. 使用 Hawkeye 训练模型


1. 什么是 Hawkeye 库



Hawkeye 是一个基于 PyTorch 的细粒度图像识别深度学习工具库,专为相关领域研究人员和工程师设计。目前,Hawkeye 包含多种代表性范式的细粒度识别方法,包括 “基于深度滤波器”、“基于注意力机制”、“基于高阶特征交互”、“基于特殊损失函数”、“基于网络数据” 以及其他方法。


Hawkeye 项目代码风格良好,结构清晰易读,可拓展性较强。对于刚接触细粒度图像识别领域的相关人员而言,Hawkeye 较易上手,便于其理解细粒度图像识别的主要流程和代表性方法,同时也方便在本工具库上快速实现自己的算法。此外,我们还给出了库中各模型的训练示例代码,自研方法也可按照示例快速适配并添加至 Hawkeye 中。


Hawkeye 开源库链接:https://github.com/Hawkeye-FineGrained/Hawkeye


2. Hawkeye 支持的模型及方法


Hawkeye 目前支持细粒度图像识别中主要学习范式的共 16 个模型与方法,具体如下:


  • 基于深度滤波器
  • S3N (ICCV 2019)
  • Interp-Parts (CVPR 2020)
  • ProtoTree (CVPR 2021)
  • 基于注意力机制
  • OSME+MAMC (ECCV 2018)
  • MGE-CNN (ICCV 2019)
  • APCNN (IEEE TIP 2021)
  • 基于高阶特征交互
  • BCNN (ICCV 2015)
  • CBCNN (CVPR 2016)
  • Fast MPN-COV (CVPR 2018)
  • 基于特殊损失函数
  • Pairwise Confusion (ECCV 2018)
  • API-Net (AAAI 2020)
  • CIN (AAAI 2020)
  • 基于网络数据
  • Peer-Learning (ICCV 2021)
  • 其他方法
  • NTS-Net (ECCV 2018)
  • CrossX (ICCV 2019)
  • DCL (CVPR 2019)


3. 安装 Hawkeye


安装依赖


使用 conda 或者 pip 安装相关依赖:


  • Python 3.8
  • PyTorch 1.11.0 or higher
  • torchvison 0.12.0 or higher
  • numpy
  • yacs
  • tqdm


克隆仓库:




git clone https://github.com/Hawkeye-FineGrained/Hawkeye.gitcd Hawkeye


准备数据集


我们提供了 8 个常用的细粒度识别数据集及最新的下载链接:


首先,下载一个数据集(以 CUB200 为例):





cd Hawkeye/datawget https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgzmkdir bird && tar -xvf CUB_200_2011.tgz -C bird/


我们提供了上述 8 个数据集的 meta-data 文件,能够匹配库中的 FGDataset 方便地加载训练集和测试集,训练集和测试集为各个数据集官方提供的划分。使用不同数据集时,只需在实验的 config 文件中修改 dataset 配置即可,方便切换。


在实验的 config 文件中修改 dataset 配置,示例如下:






dataset:  name: cub  root_dir: data/bird/CUB_200_2011/images  meta_dir: metadata/cub


4. 使用 Hawkeye 训练模型


对于 Hawkeye 支持的每个方法,我们均提供了单独的训练模板和配置文件。例如训练 APINet 只需一条命令:



python Examples/APINet.py --config configs/APINet.yaml

实验的参数都在相应的 yaml 文件中,可读性高、便于修改,如:



experiment:name: API_res101 2        # 实验名称  log_dir: results/APINet   # 实验日志、结果等的输出目录  seed: 42                  # 可以选择固定的随机数种子#  resume: results/APINet/API_res101 2/checkpoint_epoch_19.pth    # 可以从训练中断的 checkpoint 中恢复训练dataset:  name: cub          # 使用 CUB200 数据集  root_dir: data/bird/CUB_200_2011/images   # 数据集中图像放置的路径  meta_dir: metadata/cub                  # CUB200 的 metadata 路径  n_classes: 10         # 类别数,APINet 需要的数据集  n_samples: 4          # 每个类别的样本数  batch_size: 24        # 测试时的批样本数  num_workers: 4      # Dataloader 加载数据集的线程数  transformer:        # 数据增强的参数配置    image_size: 224      # 图像输入模型的尺寸 224x224    resize_size: 256    # 图像增强前缩放的尺寸 256x256model:  name: APINet        # 使用 APINet 模型,见 `model/methods/APINet.py`  num_classes: 200      # 类别数目#  load: results/APINet/API_res101 1/best_model.pth     # 可以加载训练过的模型参数train:  cuda: [4]          # 使用的 GPU 设备 ID 列表,[] 时使用 CPU  epoch: 100        # 训练的 epoch 数量  save_frequence: 10    # 自动保存模型的频率#  val_first: False      # 可选是否在训练前进行一次模型精度的测试  optimizer:    name: Adam        # 使用 Adam 优化器    lr: 0.0001        # 学习率为 0.0001    weight_decay: 0.00000002  scheduler:    # 本例使用自定义组合的 scheduler,由 warmup 和余弦退火学习率组合而成,见 `Examples/APINet.py`    name: ''    T_max: 100        # scheduler 的总迭代次数    warmup_epochs: 8    # warmup 的 epoch 数    lr_warmup_decay: 0.01  # warmup 衰减的比例  criterion:    name: APINetLoss    # APINet 使用的损失函数,见 `model/loss/APINet_loss.py`

实验的主程序 Examples/APINet.py 中的训练器 APINetTrainer 继承自 Trainer,不需要再写复杂的训练流程、logger、模型保存、配置加载等代码,只用按需修改部分模块即可。我们也提供了训练阶段的多个 hook 钩子,可以满足一些方法特别的实现方式。

日志文件、模型权重文件、训练使用的训练代码以及当时的配置文件都会保存在实验输出目录 log_dir 中,备份配置和训练代码便于日后对不同实验进行对比。


更多详细示例可参考项目链接中的具体信息:https://github.com/Hawkeye-FineGrained/Hawkeye


参考

[1] X.-S. Wei, Y.-Z. Song, O. Mac Aodha, J. Wu, Y. Peng, J. Tang, J. Yang, and S. Belongie. Fine-Grained Image Analysis with Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), DOI: 10.1109/TPAMI.2021.3126648. https://ieeexplore.ieee.org/document/9609630

相关文章
|
9天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
40 9
|
5天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
8天前
|
机器学习/深度学习 人工智能 计算机视觉
探索深度学习在图像识别中的突破与挑战##
本文深入探讨了深度学习技术在图像识别领域的最新进展,重点分析了卷积神经网络(CNN)作为核心技术的演变历程,从LeNet到AlexNet,再到VGG、ResNet等先进架构的创新点。不同于传统摘要形式,本文摘要旨在通过一系列关键里程碑事件,勾勒出深度学习推动图像识别技术飞跃的轨迹,同时指出当前面临的主要挑战,如模型泛化能力、计算资源依赖性及数据偏见问题,为读者提供一个宏观且具体的发展脉络概览。 ##
34 7
|
6天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
7天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
9天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
10天前
|
机器学习/深度学习 算法 数据处理
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、主要算法以及在实际场景中的应用效果。同时,文章也指出了当前深度学习在图像识别领域面临的挑战,包括数据不平衡、模型泛化能力、计算资源需求等问题,并展望了未来的研究方向。
|
8天前
|
机器学习/深度学习 算法 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第37天】本文将深入探讨深度学习在图像识别领域的应用,通过解析神经网络模型的构建、训练和优化过程,揭示深度学习如何赋能计算机视觉。文章还将展示代码示例,帮助读者理解并实现自己的图像识别项目。
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第36天】在当今科技飞速发展的时代,深度学习已成为人工智能领域的一颗璀璨明珠。本文将深入探讨深度学习在图像识别方面的技术原理和应用实例,旨在为读者提供一个全面而深入的了解。我们将从基础理论出发,逐步揭示深度学习如何革新了我们对图像数据的处理和理解方式。
|
9天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习在图像识别中的应用
【10月更文挑战第36天】本文将深入探讨深度学习技术在图像识别领域的应用,并展示如何通过Python和TensorFlow库实现一个简单的图像识别模型。我们将从基础理论出发,逐步引导读者理解深度学习模型的构建过程,并通过代码示例加深理解。无论你是初学者还是有一定基础的开发者,都能从中获得启发。