基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
简介: 基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

机器之心编辑部细粒度图像识别 [1] 是视觉感知学习的重要研究课题,在智能新经济和工业互联网等方面具有巨大应用价值,且在诸多现实场景已有广泛应用…… 鉴于当前领域内尚缺乏该方面的深度学习开源工具库,南京理工大学魏秀参教授团队用时近一年时间,开发、打磨、完成了 Hawkeye——细粒度图像识别深度学习开源工具库,供相关领域研究人员和工程师参考使用。本文是对 Hawkeye 的详细介绍。


目录


1. 什么是 Hawkeye 库

2. Hawkeye 支持的模型及方法

3. 安装 Hawkeye

4. 使用 Hawkeye 训练模型


1. 什么是 Hawkeye 库



Hawkeye 是一个基于 PyTorch 的细粒度图像识别深度学习工具库,专为相关领域研究人员和工程师设计。目前,Hawkeye 包含多种代表性范式的细粒度识别方法,包括 “基于深度滤波器”、“基于注意力机制”、“基于高阶特征交互”、“基于特殊损失函数”、“基于网络数据” 以及其他方法。


Hawkeye 项目代码风格良好,结构清晰易读,可拓展性较强。对于刚接触细粒度图像识别领域的相关人员而言,Hawkeye 较易上手,便于其理解细粒度图像识别的主要流程和代表性方法,同时也方便在本工具库上快速实现自己的算法。此外,我们还给出了库中各模型的训练示例代码,自研方法也可按照示例快速适配并添加至 Hawkeye 中。


Hawkeye 开源库链接:https://github.com/Hawkeye-FineGrained/Hawkeye


2. Hawkeye 支持的模型及方法


Hawkeye 目前支持细粒度图像识别中主要学习范式的共 16 个模型与方法,具体如下:


  • 基于深度滤波器
  • S3N (ICCV 2019)
  • Interp-Parts (CVPR 2020)
  • ProtoTree (CVPR 2021)
  • 基于注意力机制
  • OSME+MAMC (ECCV 2018)
  • MGE-CNN (ICCV 2019)
  • APCNN (IEEE TIP 2021)
  • 基于高阶特征交互
  • BCNN (ICCV 2015)
  • CBCNN (CVPR 2016)
  • Fast MPN-COV (CVPR 2018)
  • 基于特殊损失函数
  • Pairwise Confusion (ECCV 2018)
  • API-Net (AAAI 2020)
  • CIN (AAAI 2020)
  • 基于网络数据
  • Peer-Learning (ICCV 2021)
  • 其他方法
  • NTS-Net (ECCV 2018)
  • CrossX (ICCV 2019)
  • DCL (CVPR 2019)


3. 安装 Hawkeye


安装依赖


使用 conda 或者 pip 安装相关依赖:


  • Python 3.8
  • PyTorch 1.11.0 or higher
  • torchvison 0.12.0 or higher
  • numpy
  • yacs
  • tqdm


克隆仓库:




git clone https://github.com/Hawkeye-FineGrained/Hawkeye.gitcd Hawkeye


准备数据集


我们提供了 8 个常用的细粒度识别数据集及最新的下载链接:


首先,下载一个数据集(以 CUB200 为例):





cd Hawkeye/datawget https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgzmkdir bird && tar -xvf CUB_200_2011.tgz -C bird/


我们提供了上述 8 个数据集的 meta-data 文件,能够匹配库中的 FGDataset 方便地加载训练集和测试集,训练集和测试集为各个数据集官方提供的划分。使用不同数据集时,只需在实验的 config 文件中修改 dataset 配置即可,方便切换。


在实验的 config 文件中修改 dataset 配置,示例如下:






dataset:  name: cub  root_dir: data/bird/CUB_200_2011/images  meta_dir: metadata/cub


4. 使用 Hawkeye 训练模型


对于 Hawkeye 支持的每个方法,我们均提供了单独的训练模板和配置文件。例如训练 APINet 只需一条命令:



python Examples/APINet.py --config configs/APINet.yaml

实验的参数都在相应的 yaml 文件中,可读性高、便于修改,如:



experiment:name: API_res101 2        # 实验名称  log_dir: results/APINet   # 实验日志、结果等的输出目录  seed: 42                  # 可以选择固定的随机数种子#  resume: results/APINet/API_res101 2/checkpoint_epoch_19.pth    # 可以从训练中断的 checkpoint 中恢复训练dataset:  name: cub          # 使用 CUB200 数据集  root_dir: data/bird/CUB_200_2011/images   # 数据集中图像放置的路径  meta_dir: metadata/cub                  # CUB200 的 metadata 路径  n_classes: 10         # 类别数,APINet 需要的数据集  n_samples: 4          # 每个类别的样本数  batch_size: 24        # 测试时的批样本数  num_workers: 4      # Dataloader 加载数据集的线程数  transformer:        # 数据增强的参数配置    image_size: 224      # 图像输入模型的尺寸 224x224    resize_size: 256    # 图像增强前缩放的尺寸 256x256model:  name: APINet        # 使用 APINet 模型,见 `model/methods/APINet.py`  num_classes: 200      # 类别数目#  load: results/APINet/API_res101 1/best_model.pth     # 可以加载训练过的模型参数train:  cuda: [4]          # 使用的 GPU 设备 ID 列表,[] 时使用 CPU  epoch: 100        # 训练的 epoch 数量  save_frequence: 10    # 自动保存模型的频率#  val_first: False      # 可选是否在训练前进行一次模型精度的测试  optimizer:    name: Adam        # 使用 Adam 优化器    lr: 0.0001        # 学习率为 0.0001    weight_decay: 0.00000002  scheduler:    # 本例使用自定义组合的 scheduler,由 warmup 和余弦退火学习率组合而成,见 `Examples/APINet.py`    name: ''    T_max: 100        # scheduler 的总迭代次数    warmup_epochs: 8    # warmup 的 epoch 数    lr_warmup_decay: 0.01  # warmup 衰减的比例  criterion:    name: APINetLoss    # APINet 使用的损失函数,见 `model/loss/APINet_loss.py`

实验的主程序 Examples/APINet.py 中的训练器 APINetTrainer 继承自 Trainer,不需要再写复杂的训练流程、logger、模型保存、配置加载等代码,只用按需修改部分模块即可。我们也提供了训练阶段的多个 hook 钩子,可以满足一些方法特别的实现方式。

日志文件、模型权重文件、训练使用的训练代码以及当时的配置文件都会保存在实验输出目录 log_dir 中,备份配置和训练代码便于日后对不同实验进行对比。


更多详细示例可参考项目链接中的具体信息:https://github.com/Hawkeye-FineGrained/Hawkeye


参考

[1] X.-S. Wei, Y.-Z. Song, O. Mac Aodha, J. Wu, Y. Peng, J. Tang, J. Yang, and S. Belongie. Fine-Grained Image Analysis with Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), DOI: 10.1109/TPAMI.2021.3126648. https://ieeexplore.ieee.org/document/9609630

相关文章
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
1月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
2月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
145 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
5月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
252 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
9月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
486 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
8月前
|
机器学习/深度学习 自然语言处理 算法
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
2159 5
PyTorch PINN实战:用深度学习求解微分方程
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
479 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
927 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
2334 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
11月前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
344 19

推荐镜像

更多