基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

机器之心编辑部细粒度图像识别 [1] 是视觉感知学习的重要研究课题,在智能新经济和工业互联网等方面具有巨大应用价值,且在诸多现实场景已有广泛应用…… 鉴于当前领域内尚缺乏该方面的深度学习开源工具库,南京理工大学魏秀参教授团队用时近一年时间,开发、打磨、完成了 Hawkeye——细粒度图像识别深度学习开源工具库,供相关领域研究人员和工程师参考使用。本文是对 Hawkeye 的详细介绍。


目录


1. 什么是 Hawkeye 库

2. Hawkeye 支持的模型及方法

3. 安装 Hawkeye

4. 使用 Hawkeye 训练模型


1. 什么是 Hawkeye 库



Hawkeye 是一个基于 PyTorch 的细粒度图像识别深度学习工具库,专为相关领域研究人员和工程师设计。目前,Hawkeye 包含多种代表性范式的细粒度识别方法,包括 “基于深度滤波器”、“基于注意力机制”、“基于高阶特征交互”、“基于特殊损失函数”、“基于网络数据” 以及其他方法。


Hawkeye 项目代码风格良好,结构清晰易读,可拓展性较强。对于刚接触细粒度图像识别领域的相关人员而言,Hawkeye 较易上手,便于其理解细粒度图像识别的主要流程和代表性方法,同时也方便在本工具库上快速实现自己的算法。此外,我们还给出了库中各模型的训练示例代码,自研方法也可按照示例快速适配并添加至 Hawkeye 中。


Hawkeye 开源库链接:https://github.com/Hawkeye-FineGrained/Hawkeye


2. Hawkeye 支持的模型及方法


Hawkeye 目前支持细粒度图像识别中主要学习范式的共 16 个模型与方法,具体如下:


  • 基于深度滤波器
  • S3N (ICCV 2019)
  • Interp-Parts (CVPR 2020)
  • ProtoTree (CVPR 2021)
  • 基于注意力机制
  • OSME+MAMC (ECCV 2018)
  • MGE-CNN (ICCV 2019)
  • APCNN (IEEE TIP 2021)
  • 基于高阶特征交互
  • BCNN (ICCV 2015)
  • CBCNN (CVPR 2016)
  • Fast MPN-COV (CVPR 2018)
  • 基于特殊损失函数
  • Pairwise Confusion (ECCV 2018)
  • API-Net (AAAI 2020)
  • CIN (AAAI 2020)
  • 基于网络数据
  • Peer-Learning (ICCV 2021)
  • 其他方法
  • NTS-Net (ECCV 2018)
  • CrossX (ICCV 2019)
  • DCL (CVPR 2019)


3. 安装 Hawkeye


安装依赖


使用 conda 或者 pip 安装相关依赖:


  • Python 3.8
  • PyTorch 1.11.0 or higher
  • torchvison 0.12.0 or higher
  • numpy
  • yacs
  • tqdm


克隆仓库:




git clone https://github.com/Hawkeye-FineGrained/Hawkeye.gitcd Hawkeye


准备数据集


我们提供了 8 个常用的细粒度识别数据集及最新的下载链接:


首先,下载一个数据集(以 CUB200 为例):





cd Hawkeye/datawget https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgzmkdir bird && tar -xvf CUB_200_2011.tgz -C bird/


我们提供了上述 8 个数据集的 meta-data 文件,能够匹配库中的 FGDataset 方便地加载训练集和测试集,训练集和测试集为各个数据集官方提供的划分。使用不同数据集时,只需在实验的 config 文件中修改 dataset 配置即可,方便切换。


在实验的 config 文件中修改 dataset 配置,示例如下:






dataset:  name: cub  root_dir: data/bird/CUB_200_2011/images  meta_dir: metadata/cub


4. 使用 Hawkeye 训练模型


对于 Hawkeye 支持的每个方法,我们均提供了单独的训练模板和配置文件。例如训练 APINet 只需一条命令:



python Examples/APINet.py --config configs/APINet.yaml

实验的参数都在相应的 yaml 文件中,可读性高、便于修改,如:



experiment:name: API_res101 2        # 实验名称  log_dir: results/APINet   # 实验日志、结果等的输出目录  seed: 42                  # 可以选择固定的随机数种子#  resume: results/APINet/API_res101 2/checkpoint_epoch_19.pth    # 可以从训练中断的 checkpoint 中恢复训练dataset:  name: cub          # 使用 CUB200 数据集  root_dir: data/bird/CUB_200_2011/images   # 数据集中图像放置的路径  meta_dir: metadata/cub                  # CUB200 的 metadata 路径  n_classes: 10         # 类别数,APINet 需要的数据集  n_samples: 4          # 每个类别的样本数  batch_size: 24        # 测试时的批样本数  num_workers: 4      # Dataloader 加载数据集的线程数  transformer:        # 数据增强的参数配置    image_size: 224      # 图像输入模型的尺寸 224x224    resize_size: 256    # 图像增强前缩放的尺寸 256x256model:  name: APINet        # 使用 APINet 模型,见 `model/methods/APINet.py`  num_classes: 200      # 类别数目#  load: results/APINet/API_res101 1/best_model.pth     # 可以加载训练过的模型参数train:  cuda: [4]          # 使用的 GPU 设备 ID 列表,[] 时使用 CPU  epoch: 100        # 训练的 epoch 数量  save_frequence: 10    # 自动保存模型的频率#  val_first: False      # 可选是否在训练前进行一次模型精度的测试  optimizer:    name: Adam        # 使用 Adam 优化器    lr: 0.0001        # 学习率为 0.0001    weight_decay: 0.00000002  scheduler:    # 本例使用自定义组合的 scheduler,由 warmup 和余弦退火学习率组合而成,见 `Examples/APINet.py`    name: ''    T_max: 100        # scheduler 的总迭代次数    warmup_epochs: 8    # warmup 的 epoch 数    lr_warmup_decay: 0.01  # warmup 衰减的比例  criterion:    name: APINetLoss    # APINet 使用的损失函数,见 `model/loss/APINet_loss.py`

实验的主程序 Examples/APINet.py 中的训练器 APINetTrainer 继承自 Trainer,不需要再写复杂的训练流程、logger、模型保存、配置加载等代码,只用按需修改部分模块即可。我们也提供了训练阶段的多个 hook 钩子,可以满足一些方法特别的实现方式。

日志文件、模型权重文件、训练使用的训练代码以及当时的配置文件都会保存在实验输出目录 log_dir 中,备份配置和训练代码便于日后对不同实验进行对比。


更多详细示例可参考项目链接中的具体信息:https://github.com/Hawkeye-FineGrained/Hawkeye


参考

[1] X.-S. Wei, Y.-Z. Song, O. Mac Aodha, J. Wu, Y. Peng, J. Tang, J. Yang, and S. Belongie. Fine-Grained Image Analysis with Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), DOI: 10.1109/TPAMI.2021.3126648. https://ieeexplore.ieee.org/document/9609630

相关文章
|
18天前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
77 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
100 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
20天前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
19 1
|
2月前
|
机器学习/深度学习 数据挖掘 PyTorch
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
踏入深度学习领域,即使是编程新手也能借助PyTorch这一强大工具,轻松解锁高级数据分析。PyTorch以简洁的API、动态计算图及灵活性著称,成为众多学者与工程师的首选。本文将带你从零开始,通过环境搭建、构建基础神经网络到进阶数据分析应用,逐步掌握PyTorch的核心技能。从安装配置到编写简单张量运算,再到实现神经网络模型,最后应用于图像分类等复杂任务,每个环节都配有示例代码,助你快速上手。实践出真知,不断尝试和调试将使你更深入地理解这些概念,开启深度学习之旅。
32 1
|
25天前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
54 0
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
57 0
|
19天前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
82 2
|
21天前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
43 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
23天前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
39 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力