GMM高斯混合模型的EM算法参数估计matlab仿真

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: GMM高斯混合模型的EM算法参数估计matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

4f344f863cd08f1b1150502d2509a76a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5d76c5b2598ac6db2dc91469dfc3ccbc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
daa9d64ed62db148dd04160a079b39bb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    GMM,高斯混合模型,也可以简写为MOG。高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。GMMs已经在数值逼近、语音识别、图像分类、图像去噪、图像重构、故障诊断、视频分析、邮件过滤、密度估计、目标识别与跟踪等领域取得了良好的效果 。

   高斯混合模型 (GMM) 是一种机器学习算法。它们用于根据概率分布将数据分类为不同的类别。高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。

    高斯混合模型 (GMM) 是一个概率概念,用于对真实世界的数据集进行建模。GMM是高斯分布的泛化,可用于表示可聚类为多个高斯分布的任何数据集。高斯混合模型是一种概率模型,它假设所有数据点都是从具有未知参数的高斯分布的混合中生成的。

    高斯混合模型可用于聚类,这是将一组数据点分组为聚类的任务。GMM 可用于在数据集中可能没有明确定义的集群中查找集群。此外,GMM 可用于估计新数据点属于每个集群的概率。高斯混合模型对异常值也相对稳健,这意味着即使有一些数据点不能完全适合任何集群,它们仍然可以产生准确的结果。这使得 GMM 成为一种灵活而强大的数据聚类工具。它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。

    GMM 由两部分组成——均值向量 (μ) 和协方差矩阵 (Σ)。高斯分布被定义为呈钟形曲线的连续概率分布。高斯分布的另一个名称是正态分布。这是高斯混合模型的图片:它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。GMM 由两部分组成——均值向量 (μ) 和协方差矩阵 (Σ)。高斯分布被定义为呈钟形曲线的连续概率分布。高斯分布的另一个名称是正态分布。这是高斯混合模型的图片:

   EM (Expectation Maximization)算法是由Dempster、Laind和Rubin在1977年提出的一种求参数的极大似然估计方法,可以广泛地应用于处理缺损数据、截尾数据等带有噪声的不完整数据。针对不完整数据集,EM算法主要应用于以下两种情况的参数估计:第一,由于观测过程中本身的错误或局限性导致的观测数据自身不完整;第二,数据没有缺失,但是无法得到似然函数的解析解,或似然函数过于复杂,难以直接优化分析,而引入额外的缺失参数能使得简化后的似然函数便于参数估计。
    最大期望算法(Expectation-Maximization algorithm, EM),或Dempster-Laird-Rubin算法  ,是一类通过迭代进行极大似然估计(Maximum Likelihood Estimation, MLE)的优化算法,通常作为牛顿迭代法(Newton-Raphson method)的替代用于对包含隐变量(latent variable)或缺失数据(incomplete-data)的概率模型进行参数估计 。
   EM算法的标准计算框架由E步(Expectation-step)和M步(Maximization step)交替组成,算法的收敛性可以确保迭代至少逼近局部极大值。EM算法是MM算法(Minorize-Maximization algorithm)的特例之一,有多个改进版本,包括使用了贝叶斯推断的EM算法、EM梯度算法、广义EM算法等。
     由于迭代规则容易实现并可以灵活考虑隐变量,EM算法被广泛应用于处理数据的缺测值 ,以及很多机器学习(machine learning)算法,包括高斯混合模型(Gaussian Mixture Model, GMM)和隐马尔可夫模型(Hidden Markov Model, HMM)的参数估计。

3.MATLAB核心程序

z2 = gaussian2D(gridX, mu2, sigma2);
 
Z1 = reshape(z1, gridSize, gridSize);
Z2 = reshape(z2, gridSize, gridSize);
 
[C, h] = contour(u, u, Z1);
[C, h] = contour(u, u, Z2);
 
axis([-6 6 -6 6])
title('Original Data and PDFs');
 
 
m = size(X, 1);
 
k = 2;  
n = 2; 
 
indeces = randperm(m);
mu = X(indeces(1:k), :);
 
sigma = [];
 
for (j = 1 : k)
    sigma{j} = cov(X);
end
 
phi = ones(1, k) * (1 / k);
 
%Run Expectation Maximization
W = zeros(m, k);
 
for (iter = 1:1000)
    %Expectation
    pdf = zeros(m, k);
    for (j = 1 : k)
        pdf(:, j) = gaussian2D(X, mu(j, :), sigma{j});
    end
    pdf_w = bsxfun(@times, pdf, phi);
    W = bsxfun(@rdivide, pdf_w, sum(pdf_w, 2));
    %Maximization
    prevMu = mu;    
    for (j = 1 : k)
        phi(j) = mean(W(:, j), 1);
        mu(j, :) = weightedAverage(W(:, j), X);
        sigma_k = zeros(n, n);
        Xm = bsxfun(@minus, X, mu(j, :));
        for (i = 1 : m)
            sigma_k = sigma_k + (W(i, j) .* (Xm(i, :)' * Xm(i, :)));
        end
        sigma{j} = sigma_k ./ sum(W(:, j));
    end
    if (mu == prevMu)
        break
    end 
end
figure(2);
hold off;
plot(X1(:, 1), X1(:, 2), 'bo');
hold on;
plot(X2(:, 1), X2(:, 2), 'ro');
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
23小时前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
18 5
|
22小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。

热门文章

最新文章