GMM高斯混合模型的EM算法参数估计matlab仿真

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: GMM高斯混合模型的EM算法参数估计matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

4f344f863cd08f1b1150502d2509a76a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5d76c5b2598ac6db2dc91469dfc3ccbc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
daa9d64ed62db148dd04160a079b39bb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    GMM,高斯混合模型,也可以简写为MOG。高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。GMMs已经在数值逼近、语音识别、图像分类、图像去噪、图像重构、故障诊断、视频分析、邮件过滤、密度估计、目标识别与跟踪等领域取得了良好的效果 。

   高斯混合模型 (GMM) 是一种机器学习算法。它们用于根据概率分布将数据分类为不同的类别。高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。

    高斯混合模型 (GMM) 是一个概率概念,用于对真实世界的数据集进行建模。GMM是高斯分布的泛化,可用于表示可聚类为多个高斯分布的任何数据集。高斯混合模型是一种概率模型,它假设所有数据点都是从具有未知参数的高斯分布的混合中生成的。

    高斯混合模型可用于聚类,这是将一组数据点分组为聚类的任务。GMM 可用于在数据集中可能没有明确定义的集群中查找集群。此外,GMM 可用于估计新数据点属于每个集群的概率。高斯混合模型对异常值也相对稳健,这意味着即使有一些数据点不能完全适合任何集群,它们仍然可以产生准确的结果。这使得 GMM 成为一种灵活而强大的数据聚类工具。它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。

    GMM 由两部分组成——均值向量 (μ) 和协方差矩阵 (Σ)。高斯分布被定义为呈钟形曲线的连续概率分布。高斯分布的另一个名称是正态分布。这是高斯混合模型的图片:它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。GMM 由两部分组成——均值向量 (μ) 和协方差矩阵 (Σ)。高斯分布被定义为呈钟形曲线的连续概率分布。高斯分布的另一个名称是正态分布。这是高斯混合模型的图片:

   EM (Expectation Maximization)算法是由Dempster、Laind和Rubin在1977年提出的一种求参数的极大似然估计方法,可以广泛地应用于处理缺损数据、截尾数据等带有噪声的不完整数据。针对不完整数据集,EM算法主要应用于以下两种情况的参数估计:第一,由于观测过程中本身的错误或局限性导致的观测数据自身不完整;第二,数据没有缺失,但是无法得到似然函数的解析解,或似然函数过于复杂,难以直接优化分析,而引入额外的缺失参数能使得简化后的似然函数便于参数估计。
    最大期望算法(Expectation-Maximization algorithm, EM),或Dempster-Laird-Rubin算法  ,是一类通过迭代进行极大似然估计(Maximum Likelihood Estimation, MLE)的优化算法,通常作为牛顿迭代法(Newton-Raphson method)的替代用于对包含隐变量(latent variable)或缺失数据(incomplete-data)的概率模型进行参数估计 。
   EM算法的标准计算框架由E步(Expectation-step)和M步(Maximization step)交替组成,算法的收敛性可以确保迭代至少逼近局部极大值。EM算法是MM算法(Minorize-Maximization algorithm)的特例之一,有多个改进版本,包括使用了贝叶斯推断的EM算法、EM梯度算法、广义EM算法等。
     由于迭代规则容易实现并可以灵活考虑隐变量,EM算法被广泛应用于处理数据的缺测值 ,以及很多机器学习(machine learning)算法,包括高斯混合模型(Gaussian Mixture Model, GMM)和隐马尔可夫模型(Hidden Markov Model, HMM)的参数估计。

3.MATLAB核心程序

z2 = gaussian2D(gridX, mu2, sigma2);
 
Z1 = reshape(z1, gridSize, gridSize);
Z2 = reshape(z2, gridSize, gridSize);
 
[C, h] = contour(u, u, Z1);
[C, h] = contour(u, u, Z2);
 
axis([-6 6 -6 6])
title('Original Data and PDFs');
 
 
m = size(X, 1);
 
k = 2;  
n = 2; 
 
indeces = randperm(m);
mu = X(indeces(1:k), :);
 
sigma = [];
 
for (j = 1 : k)
    sigma{j} = cov(X);
end
 
phi = ones(1, k) * (1 / k);
 
%Run Expectation Maximization
W = zeros(m, k);
 
for (iter = 1:1000)
    %Expectation
    pdf = zeros(m, k);
    for (j = 1 : k)
        pdf(:, j) = gaussian2D(X, mu(j, :), sigma{j});
    end
    pdf_w = bsxfun(@times, pdf, phi);
    W = bsxfun(@rdivide, pdf_w, sum(pdf_w, 2));
    %Maximization
    prevMu = mu;    
    for (j = 1 : k)
        phi(j) = mean(W(:, j), 1);
        mu(j, :) = weightedAverage(W(:, j), X);
        sigma_k = zeros(n, n);
        Xm = bsxfun(@minus, X, mu(j, :));
        for (i = 1 : m)
            sigma_k = sigma_k + (W(i, j) .* (Xm(i, :)' * Xm(i, :)));
        end
        sigma{j} = sigma_k ./ sum(W(:, j));
    end
    if (mu == prevMu)
        break
    end 
end
figure(2);
hold off;
plot(X1(:, 1), X1(:, 2), 'bo');
hold on;
plot(X2(:, 1), X2(:, 2), 'ro');
相关文章
|
1天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
2天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
14天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
22 3
|
22天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
21天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
205 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
131 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章