AI_Papers周刊:第三期

简介: 我们介绍了 LLaMA,这是一组基础语言模型,参数范围从 7B 到 65B。我们在数万亿个令牌上训练我们的模型,并表明可以仅使用公开可用的数据集来训练最先进的模型,而无需诉诸专有和不可访问的数据集。特别是,LLaMA-13B 在大多数基准测试中都优于 GPT-3 (175B),而 LLaMA-65B 可与最佳模型 Chinchilla70B 和 PaLM-540B 竞争。我们将所有模型发布给研究社区。

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理

文摘词云


1b7a18f464c61f4bd444d35c86db0bd7.png


Top Papers


Subjects: cs.CL

 

1.LLaMA: Open and Efficient Foundation Language Models


标题:LLaMA:开放高效的基础语言模型

作者:Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux

文章链接:https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/

6490cd4a53ee77dbe9c3468699266c74.png

21f5760f4ccbba8152f4c6e9f6169af7.png

7c214250c196849043aec8f09e827090.png

709d613d3550e4af2f73f27c51176d79.png


       我们介绍了 LLaMA,这是一组基础语言模型,参数范围从 7B 到 65B。我们在数万亿个令牌上训练我们的模型,并表明可以仅使用公开可用的数据集来训练最先进的模型,而无需诉诸专有和不可访问的数据集。特别是,LLaMA-13B 在大多数基准测试中都优于 GPT-3 (175B),而 LLaMA-65B 可与最佳模型 Chinchilla70B 和 PaLM-540B 竞争。我们将所有模型发布给研究社区。

上榜理由


这是Meta在2.24最新发布的大模型LLaMA:

  • 与 Chinchilla、PaLM 或 GPT-3 不同,它只使用公开可用的数据集,使我们的工作与开源兼容且可重现,而大多数现有模型依赖于非公开可用或未记录的数据。

  • 所有的模型都接受了至少 1T tokens的训练,远远超过通常在这个规模上使用的tokens。有趣的是,即使在 1T tokens之后,7B 模型仍在改进。

  • 在常识推理、闭卷问答和阅读理解方面,LLaMA-65B 在几乎所有基准测试中都优于 Chinchilla 70B 和 PaLM 540B。

  • LLaMA-65B 在 GSM8k 上的表现优于 Minerva-62B,尽管它尚未在任何数学数据集上进行微调。在 MATH 基准测试中,它优于 PaLM-62B(但远低于 Minerva-62B)

  • 在代码生成基准测试中,LLaMA-62B 优于 cont-PaLM (62B) 和 PaLM-540B。

  • 据官方:开源、一块GPU就能跑,1/10参数量打败GPT-3。

2.FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation


标题:FRMT:小样本区域感知机器翻译的基准

作者:Parker Riley, Timothy Dozat, Jan A. Botha, Xavier Garcia, Dan Garrette, Jason Riesa, Orhan Firat, Noah Constant

文章链接:https://arxiv.org/abs/2210.00193

项目代码:https://github.com/google-research/google-research/tree/master/frmt

986f3fdd863dd84a28e083572ae0d3c8.png

ae52a309065cc1572a83a3be33b0e48d.png

baa063c828609a0bedf66401ac0cf550.png

912c509606fdbbe7905903e4d7a807a7.png

       我们展示了 FRMT,这是一种新的数据集和评估基准,适用于 Few-shot Region-aware Machine Translation,一种以风格为目标的翻译。该数据集包括从英语到葡萄牙语和普通话两种区域变体的专业翻译。选择源文档是为了能够对感兴趣的现象进行详细分析,包括词汇上不同的术语和干扰项。我们探索 FRMT 的自动评估指标,并在区域匹配和不匹配的评级场景中验证它们与专家人类评估的相关性。最后,我们为这项任务提供了一些基线模型,并为研究人员如何训练、评估和比较他们自己的模型提供了指导方针。

Subjects: cs.CV


1.Composer: Creative and Controllable Image Synthesis with Composable Conditions


标题:Composer:具有可组合条件的创造性和可控图像合成

作者:Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao, Jingren Zhou

文章链接:hhttps://arxiv.org/abs/2302.09778

项目代码:https://damo-vilab.github.io/composer-page/

24b21d9e1dda962d2a6570bed32493ce.png

f1d24cd1972e5abf53fe987c02af1c8d.png

0a6f870e89eda11c481d062509f72449.png


       我们最近在大数据上学习的大规模生成模型能够合成令人难以置信的图像,但可控性有限。这项工作提供了一种新一代范例,可以灵活控制输出图像,例如空间布局和调色板,同时保持合成质量和模型创造力。以组合性为核心思想,我们首先将图像分解为具有代表性的因素,然后以所有这些因素为条件训练扩散模型对输入进行重组。在推理阶段,丰富的中间表示作为可组合元素工作,为可定制的内容创建带来巨大的设计空间(即,与分解因子的数量成指数比例)。值得注意的是,我们称之为 Composer 的方法支持各种级别的条件,例如作为全局信息的文本描述、作为局部指导的深度图和草图、用于低级细节的颜色直方图等。除了提高可控性外,我们确认 Composer 是一个通用框架,无需重新训练即可促进各种经典生成任务。

上榜理由


这是阿里巴巴团队在2.20日发表的最新扩散模型Composer:

  • Composer 是一个大型(50 亿个参数)可控扩散模型,在数十亿(文本、图像)对上进行训练.

  • 它可以根据文本和深度、蒙面图像和文本、草图、深度和嵌入、文本和调色板等等生成图像,也可以修复草图、重新配置图像、颜色插值、 特定区域的图像编辑,在图片翻译、风格转移、姿势转移、虚拟试穿经典的任务上也表现的很好。

现在扩散模型的发展简直可以用飞速来形容,每天都有令人瞠目结舌的成果发布。

2.Adding Conditional Control to Text-to-Image Diffusion Models


标题:向文本到图像扩散模型添加条件控制

作者:Lvmin Zhang, Maneesh Agrawala

文章链接:https://arxiv.org/abs/2302.05543

项目代码:https://github.com/lllyasviel/controlnet

摘要:

       深度生成模型在文本到图像合成方面取得了令人瞩目的成果。然而,当前的文本到图像模型通常会生成与文本提示不充分对齐的图像。我们提出了一种使用人类反馈来对齐此类模型的微调方法,包括三个阶段。首先,我们从一组不同的文本提示中收集评估模型输出对齐的人类反馈。然后,我们使用人工标记的图像文本数据集来训练预测人类反馈的奖励函数。最后,文本到图像模型通过最大化奖励加权似然来改进图像文本对齐进行微调。我们的方法比预训练模型更准确地生成具有指定颜色、计数和背景的对象。我们还分析了几种设计选择,发现对此类设计选择进行仔细调查对于平衡对齐保真度权衡非常重要。我们的结果证明了从人类反馈中学习以显着改进文本到图像模型的潜力。

8ab2811b45fc77112f30d9b2fc5ca00b.png

01dff71c41479bbfea3f5a5f435afb02.png

0b66f5eb390cc479f2f3f43b4f1622c6.png

       我们提出了一种神经网络结构 ControlNet,用于控制预训练的大型扩散模型以支持额外的输入条件。ControlNet 以端到端的方式学习特定于任务的条件,即使训练数据集很小 (< 50k),学习也很稳健。此外,训练 ControlNet 与微调扩散模型一样快,并且可以在个人设备上训练模型。或者,如果可以使用强大的计算集群,该模型可以扩展到大量(数百万到数十亿)数据。我们报告说,像 Stable Diffusion 这样的大型扩散模型可以通过 ControlNets 进行增强,以启用边缘图、分割图、关键点等条件输入。这可能会丰富控制大型扩散模型的方法,并进一步促进相关应用。

      PS:效果非常的amazing的一篇成果,ControlNet可能会改变 AI 图像生成游戏规则。

3.Designing an Encoder for Fast Personalization of Text-to-Image Models


标题:设计用于快速个性化文本到图像模型的编码器

作者:Rinon Gal, Moab Arar, Yuval Atzmon, Amit H. Bermano, Gal Chechik, Daniel Cohen-Or

文章链接:https://arxiv.org/abs/2302.04761

项目代码:https://tuning-encoder.github.io/

968dfe0efbfc96ef13a285f544765df0.png

938b0d5afc3b1f6ccc213fbfb80c0fe4.png

7a9b72549dd2aeedbb7e170271299623.png

86f79e637039a3d06440218743acfa7c.png


       文本到图像的个性化旨在教授预训练的扩散模型来推理新颖的、用户提供的概念,并将它们嵌入到由自然语言提示引导的新场景中。然而,当前的个性化方法与冗长的训练时间、高存储要求或身份丢失作斗争。为了克服这些限制,我们提出了一种基于编码器的域调整方法。我们的主要见解是,通过欠拟合来自给定领域的大量概念,我们可以提高泛化能力并创建一个更适合快速添加来自同一领域的新概念的模型。具体来说,我们采用了两个组件:首先,一个编码器,它将来自给定域的目标概念的单个图像作为输入,例如一个特定的面孔,并学习将其映射到表示该概念的词嵌入中。其次,一组用于文本到图像模型的正则化权重偏移,学习如何有效地摄取额外的概念。这些组件共同用于指导未知概念的学习,使我们能够仅使用一张图像和少至 5 个训练步骤来个性化模型——将个性化从几十分钟加速到几秒钟,同时保持质量。

4.MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes


标题:MERF:用于无界场景中实时视图合成的内存高效辐射场

作者:Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P. Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T. Barron, Peter Hedman

文章链接:https://arxiv.org/abs/2302.04761

项目代码:t https://merf42.github.io

08c259272e463fd8c616664c9d19a103.png

11aeaa3e8668e41be217e1cffe174333.png

d3c1204a8d1a785ab70b64f31485a72f.png

ab6dfa2743a5cd25176c6e6be44493fc.png

       神经辐射场可实现最先进的逼真视图合成。然而,现有的辐射场表示对于实时渲染来说计算量太大,或者需要太多内存才能扩展到大型场景。我们提出了一种内存高效辐射场 (MERF) 表示,可在浏览器中实现大规模场景的实时渲染。MERF 使用稀疏特征网格和高分辨率 2D 特征平面的组合减少了先验稀疏体积辐射场的内存消耗。为了支持大规模无界场景,我们引入了一种新颖的收缩函数,可将场景坐标映射到有界体积中,同时仍允许有效的光线盒相交。我们设计了一个无损程序,用于将训练期间使用的参数化烘焙到一个模型中,该模型可实现实时渲染,同时仍保留体积辐射场的逼真视图合成质量。

Notable Papers


1.DisCO: Portrait Distortion Correction with Perspective-Aware 3D GANs


标题:DisCO:使用透视感知 3D GAN 进行人像失真校正

文章链接:https://arxiv.org/abs/2302.12253

0c1a96e16bbcb8a4df221c0ddc19f400.png

摘要:

       在近距离拍摄的特写面部图像通常会出现透视失真,导致夸张的面部特征和不自然/不吸引人的外观。我们提出了一种简单而有效的方法来校正单个特写脸部中的透视失真。我们首先通过联合优化相机内部/外部参数和面部潜在代码,使用透视扭曲的输入面部图像执行 GAN 反演。为了解决联合优化的模糊性,我们开发了焦距重新参数化、优化调度和几何正则化。以适当的焦距和相机距离重新渲染肖像可以有效地纠正这些失真并产生更自然的效果。我们的实验表明,我们的方法在视觉质量方面优于以前的方法。我们展示了许多示例,以验证我们的方法在野外人像照片上的适用性。

2.Improving Adaptive Conformal Prediction Using Self-Supervised Learning


标题:使用自监督学习改进自适应适形预测

文章链接:https://arxiv.org/abs/2302.12238

d9c578a1a58b1c3b9204c68f22aa8b14.png

摘要:

       共形预测是一种强大的无分布不确定性量化工具,可通过有限样本保证建立有效的预测区间。为了产生也适应每个实例难度的有效区间,一种常见的方法是在单独的校准集上计算归一化的不合格分数。自我监督学习已在许多领域得到有效利用,以学习下游预测变量的一般表示。然而,除了模型预训练和表示学习之外,自我监督的使用在很大程度上还没有被探索过。在这项工作中,我们研究了自我监督借口任务如何提高共形回归器的质量,特别是通过提高共形区间的适应性。我们在现有预测模型的基础上训练一个具有自我监督借口任务的辅助模型,并将自我监督错误作为附加特征来估计不合格分数。我们使用关于保形预测区间的效率(宽度)、不足和超额的合成和真实数据,凭经验证明了附加信息的好处。

3.Aligning Text-to-Image Models using Human Feedback


标题:使用人工反馈对齐文本到图像模型

文章链接:https://arxiv.org/abs/2302.12192

2d99620f7b034bee2ec7dfe52a8e3842.png

摘要:

       深度生成模型在文本到图像合成方面取得了令人瞩目的成果。然而,当前的文本到图像模型通常会生成与文本提示不充分对齐的图像。我们提出了一种使用人类反馈来对齐此类模型的微调方法,包括三个阶段。首先,我们从一组不同的文本提示中收集评估模型输出对齐的人类反馈。然后,我们使用人工标记的图像文本数据集来训练预测人类反馈的奖励函数。最后,文本到图像模型通过最大化奖励加权似然来改进图像文本对齐进行微调。我们的方法比预训练模型更准确地生成具有指定颜色、计数和背景的对象。我们还分析了几种设计选择,发现对此类设计选择进行仔细调查对于平衡对齐保真度权衡非常重要。我们的结果证明了从人类反馈中学习以显着改进文本到图像模型的潜力。

目录
相关文章
|
6月前
|
数据采集 人工智能 Rust
『GitHub项目圈选周刊01』一款构建AI数字人项目开源了!自动实现音视频同步!
『GitHub项目圈选周刊01』一款构建AI数字人项目开源了!自动实现音视频同步!
987 0
|
机器学习/深度学习 编解码 自然语言处理
AI_Papers周刊:第六期
大型语言模型 (LLM) 因其令人印象深刻的能力而广受欢迎,但对特定于模型的微调或特定于任务的提示工程的需求可能会阻碍它们的泛化。我们提出了 UPRISE(用于改进零样本评估的通用提示检索),它调整了一个轻量级且多功能的检索器,该检索器可以自动检索给定零样本任务输入的提示。
155 0
|
机器学习/深度学习 人工智能 自然语言处理
AI_News周刊:第六期
3月16日下午,文心一言发布会在百度科技园举行。百度创始人李彦宏介绍,百度在过去十几年间一直在AI研发上持续投入,文心大模型的第一个版本在2019年就发布了,此后每一年都要发布一个新的版本。“全球大厂中百度是第一个发布的”,李彦宏坦承,这段时间不断有人问他为什么现在发布文心一言,百度是否真的准备好了
87 0
|
机器学习/深度学习 人工智能 缓存
AI_Papers周刊:第五期
我们研究了语言模型中的上下文学习 (ICL) 如何受到语义先验与输入标签映射的影响。我们研究了两种设置——带有翻转标签的 ICL 和带有语义无关标签的 ICL——跨越各种模型系列(GPT-3、InstructGPT、Codex、PaLM 和 Flan-PaLM)。
181 0
|
机器学习/深度学习 人工智能 分布式计算
AI_News周刊:第五期
OpenAI 以比预期低得多的价格发布了 ChatGPT 和 Whisper API,部分原因是为了响应开源 LLM 和竞争对手模型的进步。ChatGPT 可通过 GPT-Turbo 以每 1k 代币 0.002 美元的价格获得,比其达芬奇模型便宜 10 倍(9 月份其价格降低了 3 倍)并且与 OpenAI 较小的居里模型的定价一致(居里估计为7-100 亿个参数对比达芬奇的 1750 亿个参数)。
117 0
|
机器学习/深度学习 人工智能 自然语言处理
AI_Papers周刊:第四期
语言、多模式感知、动作和世界建模的大融合是通向通用人工智能的关键一步。在这项工作中,我们介绍了 Kosmos-1,这是一种多模态大型语言模型 (MLLM),它可以感知一般模态、在上下文中学习(即少镜头)并遵循指令(即零镜头)。
202 0
|
机器学习/深度学习 人工智能 自然语言处理
AI_News周刊:第四期
据两位直接了解这项工作的人士和另一位了解情况的人士透露,埃隆·马斯克最近几周与人工智能研究人员接洽,商讨成立一个新的研究实验室,以开发 ChatGPT 的替代品,ChatGPT 是初创公司 OpenAI 开发的备受瞩目的聊天机器人。
100 0
|
机器学习/深度学习 人工智能 自然语言处理
AI_News周刊:第三期
2023 年 2 月 21 日——贝恩公司今天宣布与 OpenAI 建立全球服务联盟,OpenAI 是人工智能系统 ChatGPT、DALL·E 和 Codex 背后的研究和部署公司,这些系统正在改变人们交流和创造的方式。贝恩和 OpenAI 正在合作,将 OpenAI 的突破性功能带给全球客户。通过该联盟,贝恩将其深厚的数字化实施能力和战略专长与 OpenAI 的人工智能工具和平台(包括 ChatGPT)相结合,帮助其全球客户识别和实施人工智能的价值,以最大限度地发挥商业潜力。
82 0
|
机器学习/深度学习 自然语言处理 算法
AI_Papers周刊:第二期
心理理论 (ToM),或将不可观察的心理状态归因于他人的能力,是人类社会互动、沟通、同理心、自我意识和道德的核心。我们在没有任何示例或预训练的情况下,对多种语言模型执行广泛用于测试人类 ToM 的经典错误信念任务。我们的结果表明,2022 年之前发布的模型几乎没有能力解决 ToM 任务。
139 0
|
人工智能 自然语言处理 机器人
AI_News周刊:第二期
这一转变标志着自社交媒体以来最重要的技术突破。近几个月来,好奇、震惊的公众如饥似渴地采用了生成式人工智能工具,这要归功于诸如 ChatGPT 之类的程序,它对几乎任何查询做出连贯(但并不总是准确)的响应,以及 Dall-E,它允许你召唤任何你想要的图像做梦。1 月份,ChatGPT 的月用户达到 1 亿,采用率高于 Instagram 或 TikTok。从 Midjourney 到 Stable Diffusion 再到 GitHub 的 Copilot,数以百计同样惊人的生成式 AI 都在呼吁采用,它可以让你将简单的指令转化为计算机代码。
99 0

热门文章

最新文章