「炼丹必备」15个常用基准数据集含大规模中文多模态理解、医疗信息处理等场景(2)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 「炼丹必备」15个常用基准数据集含大规模中文多模态理解、医疗信息处理等场景

11、大规模的人脸属性数据集 CelebA



CelebFaces Attributes Dataset (CelebA) 是一个大规模的人脸属性数据集,由香港中文大学开放提供。它包含超过 20 万张名人图像,每张图像有 40 个属性标记。该数据集中的图像涵盖了较大的姿势变化和背景杂乱。CelebA 种类多、数量多、注释丰富,包括 10,177 个身份,202,599 张人脸图像,以及 5 个人脸特征点坐标,每张图像 40 个属性标记。


该数据集可用作以下计算机视觉任务的训练和测试集:人脸属性识别、人脸识别、人脸检测、地标(或人脸部分)定位以及人脸编辑与合成。



12、行为识别数据集 UCF101



UCF101 数据集是 UCF50 的扩展,由 13,320 个视频片段组成,分为 101 个类别。这 101 个类别可分为 5 种类型(身体运动、人与人互动、人与物体互动、演奏乐器和运动)。这些视频剪辑的总长度超过 27 小时。所有视频均从 YouTube 收集,具有 25 FPS 的固定帧速率,分辨率为 320 × 240。



13、城市街景语义理解的大型数据库 Cityscapes



Cityscapes 是一个专注于城市街景语义理解的大型数据库,由戴姆勒研究所,马克斯•普朗克信息学研究所和达姆施塔特科技大学可视化推理工作组提供。该数据集由大约 5000 个精细标注的图像和 20000 个粗糙标注的图像组成。它为分为 8 个类别(平面、人类、车辆、建筑、物体、自然、天空和虚空)的 30 个类别提供语义、实例和密集像素注释。该数据集具备多样性,历经数月(春、夏、秋)在白天和良好的天气条件下获得,并由手动选择帧,且具有以下特征:大量动态对象、变化的场景布局和变化的背景。


Cityscapes 数据集适用于

  1. 评估视觉算法在语义城市场景理解的主要任务中的性能:像素级、实例级和全景语义标记;
  2. 支持旨在利用大量(弱)注释数据的研究,例如用于训练深度神经网络。



14、IBM 研究院、Meta AI 等多家机构发布新基准 SCROLLS



目前,NLP 的基准主要集中在短文本上,如句子和段落。来自 IBM 研究院、Meta AI 等多家机构发布新基准 SCROLLS (Standardized CompaRison Over Long Language Sequences)。


该条进展工作通过研究了现有的长文本数据集,并精心挑选了那些文本较长的数据集,同时优先考虑那些涉及综合输入信息的任务。SCROLLS 包含总结、问题回答和自然语言推理任务,涵盖多个领域,包括文学、科学、商业和娱乐。SCROLLS 以统一的文本到文本格式提供所有的数据集,并主持一个实时排行榜,以促进对模型架构和预训练方法的研究。



15、CLUE 团队发布应用在 NLP 领域的数据为中心的基准 DataCLUE



以数据为中心(Data-centric)的AI,是一种新型的AI探索方向。它的核心问题是如何通过系统化的改造你的数据(无论是输入或者标签)来提高最终效果。


DataCLUE 是一个以数据为中心的 AI 测评。它基于 CLUE benchmark,结合 Data-centric 的 AI 的典型特征,进一步将 Data-centric 的 AI 应用于 NLP 领域,融入文本领域的特定并创造性丰富和发展了 Data-centric 的 AI。在原始数据集外,它通过提供额外的高价值的数据和数据和模型分析报告(增值服务)的形式, 使得融入人类的 AI 迭代过程(Human-in-the-loop AI pipeline) 变得更加高效,并能较大幅度提升最终效果。



在机器之心 SOTA!模型联合阿里云天池推出的「虎卷 er 行动 · 春卷er」中我们基于「 AI人必追」的本季度举办的国际顶会及机器之心报道中的社区热议工作「炼丹者必备」的基准数据集、AI顶会挑战赛优胜算法及开发基础知识,共同设计了由60道选择题构成的「虎卷er · 春榜试题」,并编撰了 3 套独家配套技术复习资料,帮助关注前沿AI技术发展的开发者梳理第一季度的重要 AI 技术工作的同时帮助注重实践技能的开发者快速温故知新,巩固知识与技能。

「虎卷er · 春榜试题」具体分布如下 ——

  • 「本季必追国际影响力AI工作」:共 18 题
  • 「AI开发常用的Benchmark数据集」:共 15 题
  • 「今年刷爆顶会Leaderboard的算法」:共 7 题
  • 「AI Foundation专业知识与开发实践基础」:共 20 题
活动期间,关注「机器之心 SOTA模型」服务号,即可通过底部菜单栏进入活动。

跟随入口引导,使用阿里云账号登录后即可进入活动界面开始答题。

「春卷er」10道「AI Foundation专业知识与开发实践基础」新题已解锁!
1 在 CNN 网络中,某图经过核为 3x3,步长为 2 的卷积层,ReLU 激活函数层,BN 层,以及一个步长为 2,核为 2*2 的池化层后,再经过一个 3*3 的的卷积层,步长为 1,此时的感受野是?
13 12
11 10
2 以下是非马尔科夫过程的是?
独立增量过程 泊松过程 维纳过程 自回归过程
3 以下对 k-means 聚类算法解释正确的是?
能自动识别类的个数,随机挑选初始点为中心点计算 能自动识别类的个数,不是随机挑选初始点为中心点计算 不能自动识别类的个数,随机挑选初始点为中心点计算 不能自动识别类的个数,不是随机挑选初始点为中心点计算
4 某个二分类模型,在训练数据上表现很好,但是在验证数据上表现不佳,通常称这种问题为?
欠拟合 过拟合 样本不均衡 样本缺失
5 下列哪一个不是常用于回归建模问题的损失函数?
均方误差(MSE Loss) 交叉熵(Cross Entropy Loss) 均绝对误差(MAE Loss) Huber Loss
6 下列哪一个不是LSTM(Long Short-Term Memory)的门控单元?
输出门 更新门 输入门 遗忘门
7 在卷积神经网络(CNN)中,使用 5*5 的卷积核对 500*500 的图片求卷积,那么在输入层和卷积层之间一共有多少个参数需要训练?
10000 25 26 250000
8 在机器学习的分类模型中,评估模型预测效果的指标有准确率(Accuracy)、召回率(Recall)、精确率(Precision)、F1指标(F1 measure),下列属于Recall 指标的表达式为?
正确的正例样本数/样本中的正例样本数 提取出的正确样本数/总样本数 正确的正例样本数/预测为正例的样本数 Precision*Recall*2 / (Precision+Recall)
9 进行机器学习的时候,通常需要对数据进行降维处理,关于降维,以下说法错误的是?
降维可以节省存储空间 一般先使用非线性降维的方法,再使用线性降维的方法 降维可以去除冗余特征 降维从一定程度上可以防止模型过拟合
10 对于一个深度学习分类任务,如果权重初始化时所有变量都设置为 0,下面哪一个描述是正确的?
没有问题,深度学习拟合能力很强,可以正常训练得到结果 深度学习不会开始训练,因为没有梯度变化 深度学习可以训练,但所有的类别都会被识别为一类 以上说法都不对
相关文章
|
2月前
|
机器学习/深度学习 TensorFlow 调度
使用Python实现深度学习模型:智能能源消耗预测与管理
使用Python实现深度学习模型:智能能源消耗预测与管理
198 30
|
3月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:智能药物研发与筛选
使用Python实现深度学习模型:智能药物研发与筛选
119 15
|
3月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
81 10
|
7月前
|
存储 机器学习/深度学习 人工智能
AIGC训练场景下的存储特征研究
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
95062 8
|
4月前
|
存储 机器学习/深度学习 测试技术
模型量化技术综述:揭示大型语言模型压缩的前沿技术
在这篇文章中,我将在语言建模的背景下介绍量化,并逐一探讨各个概念,探索各种方法论、用例以及量化背后的原理。
59 0
模型量化技术综述:揭示大型语言模型压缩的前沿技术
|
4月前
评估数据集CGoDial问题之多模态对话为什么重要
评估数据集CGoDial问题之多模态对话为什么重要
|
4月前
|
机器学习/深度学习 数据采集 存储
【2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】2 DPCNN、HAN、RCNN等传统深度学习方案
参加2021第五届“达观杯”基于大规模预训练模型的风险事件标签识别比赛的经验,包括使用DPCNN、HAN、TextRCNN、CapsuleNet和TextRCNNAttention等传统深度学习模型的方案实现,以及提分技巧,如多个模型的提交文件投票融合和生成伪标签的方法。
39 0
|
7月前
|
存储 机器学习/深度学习 人工智能
论文介绍:InfLLM——揭示大型语言模型在无需训练的情况下处理极长序列的内在能力
【5月更文挑战第18天】InfLLM是一种新方法,无需额外训练即可增强大型语言模型处理极长序列的能力。通过使用记忆单元存储长序列的远距离上下文,InfLLM能更准确地捕捉长距离依赖,提高对长文本理解。实验表明,InfLLM使预训练在短序列上的模型在处理极长序列时表现媲美甚至超过专门训练的模型。尽管有挑战,如动态上下文分割和记忆单元效率,InfLLM为长序列处理提供了有效且未经训练的解决方案。论文链接:https://arxiv.org/abs/2402.04617
165 3
|
机器学习/深度学习 人工智能 算法
机器学习模型以出色的精度进行有机反应机理分类
机器学习模型以出色的精度进行有机反应机理分类
170 0
|
SQL 自然语言处理 达摩院
「炼丹必备」15个常用基准数据集含大规模中文多模态理解、医疗信息处理等场景(1)
「炼丹必备」15个常用基准数据集含大规模中文多模态理解、医疗信息处理等场景
1039 0