评估数据集CGoDial问题之多模态对话为什么重要

简介: 评估数据集CGoDial问题之多模态对话为什么重要

问题一:Doc2Bot数据集中的对话动作信息对回复生成任务有何作用?

Doc2Bot数据集中的对话动作信息对回复生成任务有何作用?


参考回答:

Doc2Bot数据集中的对话动作信息能为回复生成任务带来约1.3pt的性能提升,这显示了对话动作信息在生成合适回复时的作用。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655768


问题二:Doc2Bot数据集中,一个文档对话数据示例包含哪些部分?

Doc2Bot数据集中,一个文档对话数据示例包含哪些部分?


参考回答:

Doc2Bot数据集中,一个文档对话数据示例包含左侧包含异质结构的文档和右侧的对话内容。其中,左侧文档包含如标题、序号和表格等结构信息,右侧对话内容中U和A分别代表用户发言和系统发言。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655769


问题三:在Doc2Bot数据集的文档对话示例中,对话是如何与文档分段对应的?

在Doc2Bot数据集的文档对话示例中,对话是如何与文档分段对应的?


参考回答:

在Doc2Bot数据集的文档对话示例中,对话被自上而下地分为多个分段,每个分段的对话分别对应了左侧文档中的不同分段。例如,上图中右侧的对话被分为四个分段,每个分段分别对应了左侧N1-4的四个文档分段。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655770


问题四:多模态对话为什么重要?

多模态对话为什么重要?


参考回答:

多模态对话重要是因为人们在日常对话中不仅依赖文字本身,还需要依赖视觉和听觉信息来理解对方的情绪、状态和真实意图。通过同时捕捉不同输入模态的特征,机器能够做出更准确的预测。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655771


问题五:多模态情感分析与对话情绪识别的区别和联系是什么?

多模态情感分析与对话情绪识别的区别和联系是什么?


参考回答:

多模态情感分析(MSA)与对话情绪识别(ERC)的区别在于研究的侧重点不同,但两者有相似性和互补性。情感与情绪在表达形式上有相似性,同时情感通常是长期形成的,而情绪是短期内的感受或感觉的表达。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655772

相关文章
|
1月前
|
机器学习/深度学习 自然语言处理 数据格式
社区供稿 |【8卡从零训练Steel-LLM】微调探索与评估
本篇文章主要介绍下微调上的探索以及评估。另外,还特意试了试训练CMMLU数据集,能在榜单上提多少分
|
4月前
长上下文能力只是吹牛?最强GPT-4o正确率仅55.8%,开源模型不如瞎蒙
【8月更文挑战第10天】新研究NoCha挑战显示,即使是顶级的大型语言模型GPT-4o,在处理长篇幅文本时正确率仅55.8%,低于人类直观水平。该挑战基于近作英文小说,检验模型对整本书信息的理解与推理能力。结果显示,模型在全局推理上的表现不佳,倾向于依赖局部信息而非整体上下文,尤其是在复杂推理需求高的科幻小说上表现更弱。这一发现揭示了当前模型在处理长上下文任务上的局限性。论文链接: [https://arxiv.org/pdf/2406.16264](https://arxiv.org/pdf/2406.16264)。
127 65
|
3月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
85 7
|
3月前
|
自然语言处理 数据处理
情感分析的终极形态:全景式细粒度多模态对话情感分析基准PanoSent
【9月更文挑战第24天】PanoSent是一种全新的多模态对话情感分析框架,旨在全景式地提取和分析情感元素,包括情感六元组提取与情感翻转分析两大任务。此框架依托大规模、高质量的多模态数据集PanoSent,涵盖文本、图像、音频等多种模态及多种语言,适应不同应用场景。为解决这些任务,研究人员提出了Chain-of-Sentiment推理框架,结合多模态大语言模型Sentica,实现细粒度的情感分析。尽管PanoSent在情感分析任务上表现优异,但仍面临多模态数据处理和跨领域适用性的挑战。
79 2
|
3月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
90 10
|
7月前
|
机器学习/深度学习 编解码 PyTorch
训练Sora模型,你可能需要这些(开源代码,模型,数据集及算力评估)
在之前的文章《复刻Sora有多难?一张图带你读懂Sora的技术路径》,《一文看Sora技术推演》我们总结了Sora模型上用到的一些核心技术和论文,今天这篇文章我们将整理和总结现有的一些开源代码、模型、数据集,以及初步训练的算力评估,希望可以帮助到国内的创业公司和个人开发者展开更深的研究。
|
5月前
|
测试技术
谷歌DeepMind全新ToT基准:全面评估LLM时间推理能力
【7月更文挑战第10天】DeepMind的ToT基准测试了大型语言模型的时间推理能力,分为ToT-Semantic(合成数据,评估时间逻辑理解)和ToT-Arithmetic(真实数据,检查时间计算)。研究使用Claude-3-Sonnet、GPT-4和Gemini 1.5 Pro进行评估,发现模型在时间逻辑理解上表现各异,而时间计算上均较强。 Gemini 1.5 Pro在复杂问题上表现出色,而GPT-4在数学相关问题上较弱。[[1](https://arxiv.org/pdf/2406.09170)]
69 1
|
7月前
|
人工智能
MIT等首次深度研究集成LLM预测能力:可媲美人类群体准确率
【4月更文挑战第16天】研究人员集成12个大型语言模型(LLM)组成“硅基群体”,在预测比赛中与925名人类预测者对比。研究发现,LLM群体的预测准确性与人类群体无显著差异,且通过集成可抵消个体模型的偏差,提高预测准确。GPT-4和Claude 2等模型结合人类预测后,准确度提升17%至28%。然而,个别LLM预测精度不一,模型选择和校准度是提升预测性能的关键,同时LLM在时间跨度和现实场景适应性方面仍有挑战。
107 6
MIT等首次深度研究集成LLM预测能力:可媲美人类群体准确率
|
人工智能 自然语言处理 文字识别
李志飞:关于GPT-4的八点观察,多模态大模型竞赛开始
李志飞:关于GPT-4的八点观察,多模态大模型竞赛开始
252 0
|
机器学习/深度学习 人工智能
功能介绍 | AI模型训练系列之高效的样本标注
功能介绍 | AI模型训练系列之高效的样本标注