Meta揭幕全球最快AI超算:目标一天之内训练万亿参数大模型

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Meta揭幕全球最快AI超算:目标一天之内训练万亿参数大模型

最近一段时间,超级计算机是科技公司比拼的重点。昨天商汤科技的 AIDC 刚刚启用,今天又传来了脸书超算的消息。

当地时间 1 月 24 日,Meta(原 Facebook)揭幕了其研究团队的全新人工智能超级计算机,预计在 2022 年中全部完成后,它将成为世界最快的计算机。

在报道文章中,Meta 表示新超算 AI Research SuperCluster(RSC)将帮助该公司构建更好的 AI 模型,这些模型可以从数万亿个示例中学习,构建跨数百种语言的模型,并同时分析文本内容、图像和视频,确定内容是否有害。当然,RSC 超算也可以用来开发新一代增强现实工具。

Meta 表示,该平台不仅有助于确保人们今天使用 Facebook 服务的安全性,而且在公司为元宇宙构建的将来也会发挥作用。


社交媒体起家的脸书在去年 10 月更名为 Meta,以反映其对元宇宙的关注,它认为元宇宙将成为移动互联网的继承者。

近几个月,元宇宙当之无愧是科技圈最热的词汇之一,这个概念指的是人们可以通过不同的设备访问共享的虚拟环境,在该环境里人们可以工作、娱乐和社交。「构建元宇宙需要巨大的计算能力(quintillion 级,10 的 18 次方),」Meta 首席执行官马克 · 扎克伯格(Mark Zuckerberg)在 Facebook 上说道: 「AI 和 RSC 将使新的人工智能模型成为可能,它们可以从数以万亿计的例子中学习,理解数百种语言甚至更多。」

Meta 表示,它相信 RSC 是目前运行速度最快的人工智能超级计算机之一。Meta 的一位发言人说,该公司已经与英伟达、Pure Storage 和 Penguin Computing 的团队合作,共同构建这台超级计算机。

高性能计算基础设施是用于训练大规模预训练模型的必要条件。Meta 表示,其 AI 研究团队一直在构建高性能系统,自研的第一代算力设施设计于 2017 年,在单个集群中拥有 2.2 万个英伟达 V100 Tensor Core GPU,每天可执行 3.5 万个训练任务。到目前为止,该基础设施在性能、可靠性和生产力方面为 Meta 研究人员确立了基准。

2020 年初,Facebook 认定加速算力增长的最佳方式是从头开始设计全新计算基础架构,以利用新的 GPU 和网络结构技术。该公司希望新 AI 超算能够在 1 EB 字节大的数据集上训练具有超过一万亿个参数的模型——仅从规模上看,这相当于 36000 年时长的高清晰度视频。


如此规模的超算肯定不能仅用于科研,Meta 表示,RSC 可以训练来自 Meta 生产系统的真实示例,确保新研究能有效地转化为实践。其推动的新模型可识别社交网络平台上的有害内容,并推动多模态人工智能,以帮助改善用户体验。Meta 认为,这是第一次有人以如此规模同时解决性能、可靠性、安全性和隐私问题。

RSC 的秘密


AI 超算主要用于人工智能模型的训练,是通过将多个 GPU 组合成计算节点来构建的,其通过高性能网络结构连接这些节点,以实现 GPU 之间的快速通信。

RSC 有 760 个 NVIDIA DGX A100 系统作为其计算节点,总共有 6080 块 GPU,每块 A100 GPU 都比 Meta 之前系统中使用的 V100 更强大。每个 DGX 通过没有超负荷的 NVIDIA Quantum 1600 Gb/s InfiniBand 两级 Clos 结构进行通信。RSC 的存储层具有 175 PB 的 Pure Storage FlashArray、46 PB 的 Penguin Computing Altus 系统中的缓存存储和 10 PB 的 Pure Storage FlashBlade。


与 Meta 的传统生产和研究基础设施相比,RSC 的早期基准测试表明,它运行计算机视觉工作流程的速度是之前的 20 倍,运行英伟达多卡通信框架 (NCCL) 的速度快了 9 倍,训练大规模 NLP 模型快了 3 倍。这意味着一个拥有数百亿参数的模型可以在 3 周内完成训练,而之前这一数字是 9 周。

作为参考,在最新一次 MLPerf 神经网络训练基准中测试的最大生产就绪(production-ready)系统是英伟达部署的 4320-GPU 系统,该系统可以在不到一分钟的时间内训练 BERT 。然而,BERT「只有」1.1 亿个参数,与 Meta 想要使用的数万亿个参数也无法相比。

RSC 的推出还伴随着 Meta 使用数据进行研究的方式的变化:

与我们之前仅利用开源和其他公开可用数据集的 AI 研究基础设施不同,RSC 允许我们在模型训练中包含来自 Meta 生产系统的真实示例,确保研究有效地转化为实践。

研究人员还写道,RSC 将采取额外的预防措施来加密和匿名这些数据,以防止泄漏。这些步骤包括将 RSC 与更大的互联网隔离既没有入站连接也没有出站连接,RSC 的流量只能从 Meta 的生产数据中心流入。此外,存储和 GPU 之间的数据路径是端到端加密的,数据是匿名的,并经过审查过程以确认匿名。


拓展计划

AI 超算 RSC 已经于昨天正式启用,但它的开发仍在进行中。Meta 表示,一旦完成构建 RSC 的第二阶段,它将可能成为全球最快的 AI 超级计算机,其混合精度计算性能接近 5 exaflops(10 的 18 次方)。

在 2022 年,Meta 正计划将 GPU 的数量从 6080 个增加到 16000 个,这将使 AI 训练性能提高 2.5 倍以上。InfiniBand 互联结构将扩展为支持 16000 个端口,采用两层拓扑结构。该系统的存储系统将具有 16 TB/s 的目标交付带宽和 EB 级容量,以满足不断增长的需求。

参考链接:https://ai.facebook.com/blog/ai-rschttps://spectrum.ieee.org/meta-ai-supercomputerhttps://www.reuters.com/technology/meta-introduces-fastest-ai-supercomputer-2022-01-24/https://blogs.nvidia.com/blog/2022/01/24/meta-ai-supercomputer-dgx/https://www.wsj.com/articles/meta-unveils-new-ai-supercomputer-11643043601

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
Baichuan-M1-14B 是百川智能推出的首个开源医疗增强大模型,专为医疗场景优化,支持多语言、快速推理,具备强大的医疗推理能力和通用能力。
86 16
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
VideoWorld 是由字节跳动、北京交通大学和中国科学技术大学联合推出的自回归视频生成模型,能够从未标注的视频数据中学习复杂知识,支持长期推理和规划任务。
102 8
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
|
11天前
|
人工智能 编解码 自然语言处理
CogView-3-Flash:智谱首个免费AI图像生成模型,支持多种分辨率,快速生成创意图像
CogView-3-Flash 是智谱推出的首个免费AI图像生成模型,支持多种分辨率,快速生成高质量图像,广泛应用于广告、设计、艺术创作等领域。
47 6
CogView-3-Flash:智谱首个免费AI图像生成模型,支持多种分辨率,快速生成创意图像
|
11天前
|
人工智能 编解码
CogVideoX-Flash:智谱首个免费AI视频生成模型,支持文生视频、图生视频,分辨率最高可达4K
CogVideoX-Flash 是智谱推出的首个免费AI视频生成模型,支持文生视频、图生视频,最高支持4K分辨率,广泛应用于内容创作、教育、广告等领域。
140 5
CogVideoX-Flash:智谱首个免费AI视频生成模型,支持文生视频、图生视频,分辨率最高可达4K
|
9天前
|
人工智能 测试技术 Python
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
VideoChat-Flash 是上海人工智能实验室等机构推出的多模态大模型,通过分层压缩技术高效处理长视频,支持长达数小时的视频输入,推理速度提升5-10倍。
43 1
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
|
15天前
|
弹性计算 人工智能 自然语言处理
OS Copilot——面向未来的AI大模型
阿里云的智能助手`OS Copilot`是一款基于大模型构建的操作系统智能助手,支持自然语言问答、辅助命令执行、系统运维调优等功能。
49 8
OS Copilot——面向未来的AI大模型
|
8天前
|
人工智能 供应链 搜索推荐
大模型进化论:AI产业落地将卷向何方?
大模型进化论:AI产业落地将卷向何方?
50 11
|
10天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
49 13
|
12天前
|
机器学习/深度学习 数据采集 人工智能
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
32 12
|
16天前
|
机器学习/深度学习 存储 人工智能
淘天算法工程师玩转《黑神话》,多模态大模型如何成为天命AI
淘天集团未来生活实验室的算法工程师们以ARPG游戏《黑神话:悟空》为平台,探索多模态大模型(VLM)在仅需纯视觉输入和复杂动作输出场景中的能力边界。他们提出了一种名为VARP的新框架,该框架由动作规划系统和人类引导的轨迹系统组成,成功在90%的简单和中等难度战斗场景中取得胜利。研究展示了VLMs在传统上由强化学习主导的任务中的潜力,并提供了宝贵的人类操作数据集,为未来研究奠定了基础。

热门文章

最新文章