【Pytorch神经网络实战案例】34 使用GPT-2模型实现句子补全功能(手动加载)

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: GPT-2 就是一个语言模型,能够根据上文预测下一个单词,所以它就可以利用预训练已经学到的知识来生成文本,如生成新闻。也可以使用另一些数据进行微调,生成有特定格式或者主题的文本,如诗歌、戏剧。

1 GPT-2 模型结构


GPT-2的整体结构如下图,GPT-2是以Transformer为基础构建的,使用字节对编码的方法进行数据预处理,通过预测下一个词任务进行预训练的语言模型。


930874a38b444ca589cea4a275fb5a7d.png


1.1 GPT-2 功能简介


GPT-2 就是一个语言模型,能够根据上文预测下一个单词,所以它就可以利用预训练已经学到的知识来生成文本,如生成新闻。也可以使用另一些数据进行微调,生成有特定格式或者主题的文本,如诗歌、戏剧。


2 手动加载GPT-2模型并实现语句与完整句子预测


使用GPT-2模型配套的PreTrainedTokenizer类,所需要加载的词表文件比BERT模型多了一个merges文件。


2.1 代码实现:手动加载GPT-2模型并实现下一个单词预测---GPT2_make.py(第1部分)


import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# 案例描述:Transformers库中的GPT-2模型,并用它实现下一词预测功能,即预测一个未完成句子的下一个可能出现的单词。
# 下一词预测任务是一个常见的任务,在Transformers库中有很多模型都可以实现该任务。也可以使用BERT模型来实现。选用GPT-2模型,主要在于介绍手动加载多词表文件的特殊方式。
# 1.1 加载词表文件
# 自动加载预训练模型(权重)
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# 手动加载词表文件:gpt2-merges.txt gpt2-vocab.json。
# from_pretrained方法是支持从本地载入多个词表文件的,但对载入的词表文件名称有特殊的要求:该文件名称必须按照源码文件tokenization_gpt2.py的VOCAB_FILES_NAMES字典对象中定义的名字来命名。
# 故使用from_pretrained方法,必须对已经下载好的词表文件进行改名将/gpt2/gpt2-vocab.json和/gpt2/gpt2-merges.txt这两个文件,分别改名为“gpt2/vocab.json和/gpt2/merges.txt
tokenizer = GPT2Tokenizer.from_pretrained(r'./models/gpt2') # 自动加载改名后的文件
# 编码输入
indexed_tokens = tokenizer.encode("Who is Li BiGor ? Li BiGor is a")
print("输入语句为:",tokenizer.decode(indexed_tokens))
tokens_tensor = torch.tensor([indexed_tokens])  # 将输入语句转换为张量
# 自动加载预训练模型(权重)
# model = GPT2LMHeadModel.from_pretrained('gpt2')
# 手动加载:配置文件gpt2-config.json 与 权重文件pt2-pytorch_model.bin
model = GPT2LMHeadModel.from_pretrained('./models/gpt2/gpt2-pytorch_model.bin',config='./models/gpt2/gpt2-config.json')
# 将模型设置为评估模式
model.eval()
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokens_tensor = tokens_tensor.to(DEVICE)
model.to(DEVICE)
# 预测所有标记
with torch.no_grad():
    outputs = model(tokens_tensor)
    predictions = outputs[0]
# 得到预测的下一词
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
print("输出语句为:",predicted_text) # GPT-2模型没有为输入文本添加特殊词。
# 输出:Who is Li BiGor? Li BiGor is a Chinese


2.2 代码实现:手动加载GPT-2模型并实现完整句子预测---GPT2_make.py(第2部分)


# 案例描述:Transformers库中的GPT-2模型,通过循环生成下一词,实现将一句话补充完整。
# 1.2 生成一段完整的话 这里有BUg 暂不会改
stopids = tokenizer.convert_tokens_to_ids(["."])[0] # 定义结束符
# 在循环调用模型预测功能时,使用了模型的past功能。该功能以使模型进入连续预测状态,即在前面预测结果的基础之上进行下一词预测,而不需要在每预测时,对所有句子进行重新处理。
# past功能是使用预训练模型时很常用的功能,在Transformers库中,凡是带有下一词预测功能的预训练模型(如GPT,XLNet,CTRL等)都有这个功能。
# 但并不是所有模型的past功能都是通过past参数进行设置的,有的模型虽然使用的参数名称是mems,但作用与pat参数一样。
past = None # 定义模型参数
for i in range(100):    # 循环100次
    with torch.no_grad():
        output, past = model(tokens_tensor, past=past)  # 预测下一次
    token = torch.argmax(output[..., -1, :])
    indexed_tokens += [token.tolist()]  # 将预测结果收集
    if stopids == token.tolist():   # 当预测出句号时,终止预测。
        break
    tokens_tensor = token.unsqueeze(0)  # 定义下一次预测的输入张量
sequence = tokenizer.decode(indexed_tokens) # 进行字符串编码
print(sequence)


3 GPT2_make.py(汇总)


import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# 案例描述:Transformers库中的GPT-2模型,并用它实现下一词预测功能,即预测一个未完成句子的下一个可能出现的单词。
# 下一词预测任务是一个常见的任务,在Transformers库中有很多模型都可以实现该任务。也可以使用BERT模型来实现。选用GPT-2模型,主要在于介绍手动加载多词表文件的特殊方式。
# 1.1 加载词表文件
# 自动加载预训练模型(权重)
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# 手动加载词表文件:gpt2-merges.txt gpt2-vocab.json。
# from_pretrained方法是支持从本地载入多个词表文件的,但对载入的词表文件名称有特殊的要求:该文件名称必须按照源码文件tokenization_gpt2.py的VOCAB_FILES_NAMES字典对象中定义的名字来命名。
# 故使用from_pretrained方法,必须对已经下载好的词表文件进行改名将/gpt2/gpt2-vocab.json和/gpt2/gpt2-merges.txt这两个文件,分别改名为“gpt2/vocab.json和/gpt2/merges.txt
tokenizer = GPT2Tokenizer.from_pretrained(r'./models/gpt2') # 自动加载改名后的文件
# 编码输入
indexed_tokens = tokenizer.encode("Who is Li BiGor ? Li BiGor is a")
print("输入语句为:",tokenizer.decode(indexed_tokens))
tokens_tensor = torch.tensor([indexed_tokens])  # 将输入语句转换为张量
# 自动加载预训练模型(权重)
# model = GPT2LMHeadModel.from_pretrained('gpt2')
# 手动加载:配置文件gpt2-config.json 与 权重文件pt2-pytorch_model.bin
model = GPT2LMHeadModel.from_pretrained('./models/gpt2/gpt2-pytorch_model.bin',config='./models/gpt2/gpt2-config.json')
# 将模型设置为评估模式
model.eval()
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokens_tensor = tokens_tensor.to(DEVICE)
model.to(DEVICE)
# 预测所有标记
with torch.no_grad():
    outputs = model(tokens_tensor)
    predictions = outputs[0]
# 得到预测的下一词
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
print("输出语句为:",predicted_text) # GPT-2模型没有为输入文本添加特殊词。
# 输出:Who is Li BiGor? Li BiGor is a Chinese
# 案例描述:Transformers库中的GPT-2模型,通过循环生成下一词,实现将一句话补充完整。
# 1.2 生成一段完整的话 这里有BUg 暂不会改
stopids = tokenizer.convert_tokens_to_ids(["."])[0] # 定义结束符
# 在循环调用模型预测功能时,使用了模型的past功能。该功能以使模型进入连续预测状态,即在前面预测结果的基础之上进行下一词预测,而不需要在每预测时,对所有句子进行重新处理。
# past功能是使用预训练模型时很常用的功能,在Transformers库中,凡是带有下一词预测功能的预训练模型(如GPT,XLNet,CTRL等)都有这个功能。
# 但并不是所有模型的past功能都是通过past参数进行设置的,有的模型虽然使用的参数名称是mems,但作用与pat参数一样。
past = None # 定义模型参数
for i in range(100):    # 循环100次
    with torch.no_grad():
        output, past = model(tokens_tensor, past=past)  # 预测下一次
    token = torch.argmax(output[..., -1, :])
    indexed_tokens += [token.tolist()]  # 将预测结果收集
    if stopids == token.tolist():   # 当预测出句号时,终止预测。
        break
    tokens_tensor = token.unsqueeze(0)  # 定义下一次预测的输入张量
sequence = tokenizer.decode(indexed_tokens) # 进行字符串编码
print(sequence)


目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
74 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
|
9天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
49 15
|
2月前
|
机器学习/深度学习 运维 安全
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
金融交易网络与蛋白质结构的共同特点是它们无法通过简单的欧几里得空间模型来准确描述,而是需要复杂的图结构来捕捉实体间的交互模式。传统深度学习方法在处理这类数据时效果不佳,图神经网络(GNNs)因此成为解决此类问题的关键技术。GNNs通过消息传递机制,能有效提取图结构中的深层特征,适用于欺诈检测和蛋白质功能预测等复杂网络建模任务。
90 2
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
|
2月前
|
安全 网络安全 数据安全/隐私保护
利用Docker的网络安全功能来保护容器化应用
通过综合运用这些 Docker 网络安全功能和策略,可以有效地保护容器化应用,降低安全风险,确保应用在安全的环境中运行。同时,随着安全威胁的不断变化,还需要持续关注和研究新的网络安全技术和方法,不断完善和强化网络安全保护措施,以适应日益复杂的安全挑战。
52 5
|
2月前
|
存储 监控 数据挖掘
计算机网络的功能
计算机网络支持信息交换、资源共享、分布式处理、可靠性增强及集中管理。信息交换涵盖多种媒体形式,促进远程协作;资源共享降低用户成本,提高效率;分布式处理提升计算能力;冗余机制保障系统稳定;集中管理简化网络维护,确保安全运行。
42 2
|
2月前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
137 3
|
2月前
|
缓存 JavaScript
Vue加载网络组件(远程组件)
【10月更文挑战第23天】在 Vue 中实现加载网络组件(远程组件)可以通过多种方式来完成。
|
2月前
|
网络协议 Unix Linux
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架

热门文章

最新文章