【Pytorch神经网络实战案例】21 基于Cora数据集实现Multi_Sample Dropout图卷积网络模型的论文分类

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 是在Dropout随机选取节点丢弃的部分上进行优化,即将Dropout随机选取的一组节点变成随机选取多组节点,并计算每组节点的结果和反向传播的损失值。最终,将计算多组的损失值进行平均,得到最终的损失值,并用其更新网络,如图9-19所示。

815902569f6a467a99304f9ac1482386.png


Multi-sample Dropout是Dropout的一个变种方法,该方法比普通Dropout的泛化能力更好,同时又可以缩短模型的训练时间。XMuli-sampleDropout还可以降低训练集和验证集的错误率和损失,参见的论文编号为arXⅳ:1905.09788,2019


1 实例说明


本例就使用Muli-sampleDropout方法为图卷积模型缩短训练时间。


1.1 Multi-sample Dropout方法/多样本联合Dropout


是在Dropout随机选取节点丢弃的部分上进行优化,即将Dropout随机选取的一组节点变成随机选取多组节点,并计算每组节点的结果和反向传播的损失值。最终,将计算多组的损失值进行平均,得到最终的损失值,并用其更新网络,如图9-19所示。


b787266f70f844e6959d9842012d71fc.png


Multi-sampleDropout在Dropout层使用两套不同的掩码选取出两组节点进行训练,这种做法相当于网络层只运行了一次样本,却输出了多个结果,进行了多次训练。因此,它可以大大减少训练的迭代次数。


1.1.2 特点


在深层神经网络中,太部分运算发生在Dropout层之前的卷积层中,Muiti-sample Dropout并不会重复这些计算,所以Multi-sampleDropout对每次迭代的计算成本影响不大。它可以大幅加快训练速度。


2 代码实现


Pytorch神经网络实战学习笔记_40 【实战】图卷积神经网络进行论文分类_LiBiGor的博客-CSDN博客


1 案例说明(图卷积神经网络)CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的论文类别。1.1 使用图卷积神经网络的特点使用图神经网络来实现分类。与深度学习模型的不同之处在于,图神经网通会利用途文本身特征和论文间的关系特征进行处理,仅需要少量样本即可达到很好的效果。1.2 CORA数据集CORA数据集是由机器学习的论文整理而来的,记录每篇论文用到的关键...

https://blog.csdn.net/qq_39237205/article/details/123863327


基于上述代码进行修改2.7搭建多层图卷积与训练部分


2 代码编写


2.1 代码实战:引入基础模块,设置运行环境----Cora_GNN.py(第1部分)


from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda
# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda


输出结果:


24b0ca48842347efab6e8091376e00a0.png


2.2 代码实现:读取并解析论文数据----Cora_GNN.py(第2部分)


# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状
# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}
# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状
# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])


输出:


a400e4d9323d474089f1a3552637f8a3.png


2.3 读取并解析论文关系数据


载入论文的关系数据,将数据中用论文ID表示的关系转化成重新编号后的关系,将每篇论文当作一个顶点,论文间的引用关系作为边,这样论文的关系数据就可以用一个图结构来表示。


b539f7004ac743998d9c96cd1e545adc.png


计算该图结构的邻接矩阵并将其转化为无向图邻接矩阵。


2.3.1 代码实现:转化矩阵----Cora_GNN.py(第3部分)


# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T


输出:


90d435af4d024da2bd67fe4695a55af6.png


2.4 加工图结构的矩阵数据


对图结构的矩阵数据进行加工,使其更好地表现出图结构特征,并参与神经网络的模型计算。


2.4.1 加工图结构的矩阵数据的步骤


1、对每个节点的特征数据进行归一化处理。


2、为邻接矩阵的对角线补1:因为在分类任务中,邻接矩阵主要作用是通过论文间的关联来帮助节点分类。对于对角线上的节点,表示的意义是自己与自己的关联。将对角线节点设为1(自环图)、表明节点也会帮助到分类任务。


3、对补1后的邻接矩阵进行归一化处理。


932919cc9ea546f8a0f4e363c671c110.png


2.4.2 代码实现:加工图结构的矩阵数据----Cora_GNN.py(第4部分)


# 1.4 加工图结构的矩阵数据
def normalize(mx): # 定义函数,对矩阵的数据进行归一化处理
    rowsum = np.array(mx.sum(1)) # 计算每一篇论文的字数==>02 对A中的边数求和,计算出矩阵A的度矩阵D^的特征向量
    r_inv = (rowsum ** -1).flatten() # 取总字数的倒数==>03 对矩阵A的度矩阵D^的特征向量求逆,并得到D^逆的特征向量
    r_inv[np.isinf(r_inv)] = 0.0 # 将NaN值取为0
    r_mat_inv = diags(r_inv) # 将总字数的倒数变为对角矩阵===》对图结构的度矩阵求逆==>04 D^逆的特征向量转化为对角矩阵,得到D^逆
    mx = r_mat_inv.dot(mx) # 左乘一个矩阵,相当于每个元素除以总数===》对每个论文顶点的边进行归一化处理==>05 计算D^逆与A加入自环(对角线为1)的邻接矩阵所得A^的点积,得到拉普拉斯矩阵。
    return mx
# 对features矩阵进行归一化处理(每行总和为1)
features = normalize(features) #在函数normalize()中,分为两步对邻接矩阵进行处理。1、将每篇论文总字数的倒数变成对角矩阵。该操作相当于对图结构的度矩阵求逆。2、用度矩阵的逆左乘邻接矩阵,相当于对图中每个论文顶点的边进行归一化处理。
# 对邻接矩阵的对角线添1,将其变为自循环图,同时对其进行归一化处理
adj = normalize(adj + eye(adj.shape[0])) # 对角线补1==>01实现加入自环的邻接矩阵A


2.5 将数据转化为张量,并分配运算资源


将加工好的图结构矩阵数据转为PyTorch支持的张量类型,并将其分成3份,分别用来进行训练、测试和验证。


2.5.1 代码实现:将数据转化为张量,并分配运算资源----Cora_GNN.py(第5部分)


# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签
# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序
# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引
# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)


2.6 图卷积


图卷积的本质是维度变换,即将每个含有in维的节点特征数据变换成含有out维的节点特征数据。


图卷积的操作将输入的节点特征、权重参数、加工后的邻接矩阵三者放在一起执行点积运算。


权重参数是个in×out大小的矩阵,其中in代表输入节点的特征维度、out代表最终要输出的特征维度。将权重参数在维度变换中的功能当作一个全连接网络的权重来理解,只不过在图卷积中,它会比全连接网络多了执行节点关系信息的点积运算。


40bb186644e6483bb9dc9e6c1da4cd31.png


如上图所示,列出全连接网络和图卷积网络在忽略偏置后的关系。从中可以很清晰地看出,图卷积网络其实就是在全连接网络基础之上增加了节点关系信息。


2.6.1 代码实现:定义Mish激活函数与图卷积操作类----Cora_GNN.py(第6部分)


在上图的所示的算法基础增加偏置,定义GraphConvolution类


# 1.6 定义Mish激活函数与图卷积操作类
def mish(x): # 性能优于RElu函数
    return x * (torch.tanh(F.softplus(x)))
# 图卷积类
class GraphConvolution(nn.Module):
    def __init__(self,f_in,f_out,use_bias = True,activation=mish):
        # super(GraphConvolution, self).__init__()
        super().__init__()
        self.f_in = f_in
        self.f_out = f_out
        self.use_bias = use_bias
        self.activation = activation
        self.weight = nn.Parameter(torch.FloatTensor(f_in, f_out))
        self.bias = nn.Parameter(torch.FloatTensor(f_out)) if use_bias else None
        self.initialize_weights()
    def initialize_weights(self):# 对参数进行初始化
        if self.activation is None: # 初始化权重
            nn.init.xavier_uniform_(self.weight)
        else:
            nn.init.kaiming_uniform_(self.weight, nonlinearity='leaky_relu')
        if self.use_bias:
            nn.init.zeros_(self.bias)
    def forward(self,input,adj): # 实现模型的正向处理流程
        support = torch.mm(input,self.weight) # 节点特征与权重点积:torch.mm()实现矩阵的相乘,仅支持二位矩阵。若是多维矩则使用torch.matmul()
        output = torch.mm(adj,support) # 将加工后的邻接矩阵放入点积运算
        if self.use_bias:
            output.add_(self.bias) # 加入偏置
        if self.activation is not None:
            output = self.activation(output) # 激活函数处理
        return output


2.7  搭建带有Multi_Sample Dropout的多层图卷积网络模型---Cora_GNN_MUti-sample-Dropout.py(修改的第1部分)


# 1.7 搭建带有Multi_Sample Dropout的多层图卷积网络模型:根据GCN模型,
class GCNTD(nn.Module):
    def __init__(self,f_in,n_classes,hidden=[16],dropout_num = 8,dropout_p=0.5 ): # 默认使用8组dropout,每组丢弃率为0.5
        # super(GCNTD, self).__init__()
        super().__init__()
        layer = []
        for f_in,f_out in zip([f_in]+hidden[:-1],hidden):
            layer += [GraphConvolution(f_in,f_out)]
        self.layers = nn.Sequential(*layer)
        # 默认使用8个Dropout分支
        self.dropouts = nn.ModuleList([nn.Dropout(dropout_p,inplace=False) for _ in range(dropout_num)] )
        self.out_layer = GraphConvolution(f_out,n_classes,activation=None)
    def forward(self,x,adj):
        # Multi - sampleDropout结构默认使用了8个Dropout分支。在前向传播过程中,具体步骤如下。
        # ①输入样本统一经过多层图卷积神经网络来到Dropout层。
        # ②由每个分支的Dropout按照指定的丢弃率对多层图卷积的结果进行Dropout处理。
        # ③将每个分支的Dropout数据传入到输出层,分别得到结果。
        # ④将所有结果加起来,生成最终结果。
        for layer,d in zip(self.layers,self.dropouts):
            x = layer(x,adj)
        if len(self.dropouts) == 0:
            return self.out_layer(x,adj)
        else:
            for i, dropout in enumerate(self.dropouts): # 将每组的输出叠加
                if i == 0 :
                    out = dropout(x)
                    out = self.out_layer(out,adj)
                else:
                    temp_out = dropout(x)
                    out = out + self.out_layer(temp_out,adj)
            return out # 返回结果
n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433
def accuracy(output,y): # 定义函数计算准确率
    return (output.argmax(1) == y).type(torch.float32).mean().item()
### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
# 在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入。
def step(): # 定义函数来训练模型
    model.train()
    optimizer.zero_grad()
    output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失
    loss = F.cross_entropy(output[idx_train],labels[idx_train])
    acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率
    loss.backward()
    optimizer.step()
    return loss.item(),acc
def evaluate(idx): # 定义函数来评估模型
    model.eval()
    output = model(features, adj) # 将全部数据载入模型
    loss = F.cross_entropy(output[idx], labels[idx]).item() # 用指定索引评估模型结果
    return loss, accuracy(output[idx], labels[idx])


2.8 代码实现:训练可视化---Cora_GNN_MUti-sample-Dropout.py(修改的第2部分)


model = GCNTD(n_features,n_labels,hidden=[16,32,16]).to(device)
from ranger import *
from functools import partial # 引入偏函数对Ranger设置参数
opt_func = partial(Ranger,betas=(0.9,0.99),eps=1e-6)
optimizer = opt_func(model.parameters())
from tqdm import tqdm
# 训练模型
epochs = 400
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):
    tl,ta = step()
    train_loss = train_loss + [tl]
    train_acc = train_acc + [ta]
    if (i+1) % print_steps == 0 or i == 0:
        tl,ta = evaluate(idx_train)
        vl,va = evaluate(idx_val)
        val_loss = val_loss + [vl]
        val_acc = val_acc + [va]
        print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')
# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')
# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)
# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)


输出:


仅仅经过400轮就可以得到更好的结果


2868e82e12bf48b8800a7463efd5a9bf.png


3 代码总览


Cora_GNN_MUti-sample-Dropout.py


from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda
# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda
# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状
# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}
# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状
# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])
# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T
# 1.4 加工图结构的矩阵数据
def normalize(mx): # 定义函数,对矩阵的数据进行归一化处理
    rowsum = np.array(mx.sum(1)) # 计算每一篇论文的字数==>02 对A中的边数求和,计算出矩阵A的度矩阵D^的特征向量
    r_inv = (rowsum ** -1).flatten() # 取总字数的倒数==>03 对矩阵A的度矩阵D^的特征向量求逆,并得到D^逆的特征向量
    r_inv[np.isinf(r_inv)] = 0.0 # 将NaN值取为0
    r_mat_inv = diags(r_inv) # 将总字数的倒数变为对角矩阵===》对图结构的度矩阵求逆==>04 D^逆的特征向量转化为对角矩阵,得到D^逆
    mx = r_mat_inv.dot(mx) # 左乘一个矩阵,相当于每个元素除以总数===》对每个论文顶点的边进行归一化处理==>05 计算D^逆与A加入自环(对角线为1)的邻接矩阵所得A^的点积,得到拉普拉斯矩阵。
    return mx
# 对features矩阵进行归一化处理(每行总和为1)
features = normalize(features) #在函数normalize()中,分为两步对邻接矩阵进行处理。1、将每篇论文总字数的倒数变成对角矩阵。该操作相当于对图结构的度矩阵求逆。2、用度矩阵的逆左乘邻接矩阵,相当于对图中每个论文顶点的边进行归一化处理。
# 对邻接矩阵的对角线添1,将其变为自循环图,同时对其进行归一化处理
adj = normalize(adj + eye(adj.shape[0])) # 对角线补1==>01实现加入自环的邻接矩阵A
# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签
# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序
# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引
# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)
# 1.6 定义Mish激活函数与图卷积操作类
def mish(x): # 性能优于RElu函数
    return x * (torch.tanh(F.softplus(x)))
# 图卷积类
class GraphConvolution(nn.Module):
    def __init__(self,f_in,f_out,use_bias = True,activation=mish):
        # super(GraphConvolution, self).__init__()
        super().__init__()
        self.f_in = f_in
        self.f_out = f_out
        self.use_bias = use_bias
        self.activation = activation
        self.weight = nn.Parameter(torch.FloatTensor(f_in, f_out))
        self.bias = nn.Parameter(torch.FloatTensor(f_out)) if use_bias else None
        self.initialize_weights()
    def initialize_weights(self):# 对参数进行初始化
        if self.activation is None: # 初始化权重
            nn.init.xavier_uniform_(self.weight)
        else:
            nn.init.kaiming_uniform_(self.weight, nonlinearity='leaky_relu')
        if self.use_bias:
            nn.init.zeros_(self.bias)
    def forward(self,input,adj): # 实现模型的正向处理流程
        support = torch.mm(input,self.weight) # 节点特征与权重点积:torch.mm()实现矩阵的相乘,仅支持二位矩阵。若是多维矩则使用torch.matmul()
        output = torch.mm(adj,support) # 将加工后的邻接矩阵放入点积运算
        if self.use_bias:
            output.add_(self.bias) # 加入偏置
        if self.activation is not None:
            output = self.activation(output) # 激活函数处理
        return output
# 1.7 搭建带有Multi_Sample Dropout的多层图卷积网络模型:根据GCN模型,
class GCNTD(nn.Module):
    def __init__(self,f_in,n_classes,hidden=[16],dropout_num = 8,dropout_p=0.5 ): # 默认使用8组dropout,每组丢弃率为0.5
        # super(GCNTD, self).__init__()
        super().__init__()
        layer = []
        for f_in,f_out in zip([f_in]+hidden[:-1],hidden):
            layer += [GraphConvolution(f_in,f_out)]
        self.layers = nn.Sequential(*layer)
        # 默认使用8个Dropout分支
        self.dropouts = nn.ModuleList([nn.Dropout(dropout_p,inplace=False) for _ in range(dropout_num)] )
        self.out_layer = GraphConvolution(f_out,n_classes,activation=None)
    def forward(self,x,adj):
        # Multi - sampleDropout结构默认使用了8个Dropout分支。在前向传播过程中,具体步骤如下。
        # ①输入样本统一经过多层图卷积神经网络来到Dropout层。
        # ②由每个分支的Dropout按照指定的丢弃率对多层图卷积的结果进行Dropout处理。
        # ③将每个分支的Dropout数据传入到输出层,分别得到结果。
        # ④将所有结果加起来,生成最终结果。
        for layer,d in zip(self.layers,self.dropouts):
            x = layer(x,adj)
        if len(self.dropouts) == 0:
            return self.out_layer(x,adj)
        else:
            for i, dropout in enumerate(self.dropouts): # 将每组的输出叠加
                if i == 0 :
                    out = dropout(x)
                    out = self.out_layer(out,adj)
                else:
                    temp_out = dropout(x)
                    out = out + self.out_layer(temp_out,adj)
            return out # 返回结果
n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433
def accuracy(output,y): # 定义函数计算准确率
    return (output.argmax(1) == y).type(torch.float32).mean().item()
### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
# 在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入。
def step(): # 定义函数来训练模型
    model.train()
    optimizer.zero_grad()
    output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失
    loss = F.cross_entropy(output[idx_train],labels[idx_train])
    acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率
    loss.backward()
    optimizer.step()
    return loss.item(),acc
def evaluate(idx): # 定义函数来评估模型
    model.eval()
    output = model(features, adj) # 将全部数据载入模型
    loss = F.cross_entropy(output[idx], labels[idx]).item() # 用指定索引评估模型结果
    return loss, accuracy(output[idx], labels[idx])
model = GCNTD(n_features,n_labels,hidden=[16,32,16]).to(device)
from ranger import *
from functools import partial # 引入偏函数对Ranger设置参数
opt_func = partial(Ranger,betas=(0.9,0.99),eps=1e-6)
optimizer = opt_func(model.parameters())
from tqdm import tqdm
# 训练模型
epochs = 400
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):
    tl,ta = step()
    train_loss = train_loss + [tl]
    train_acc = train_acc + [ta]
    if (i+1) % print_steps == 0 or i == 0:
        tl,ta = evaluate(idx_train)
        vl,va = evaluate(idx_val)
        val_loss = val_loss + [vl]
        val_acc = val_acc + [va]
        print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')
# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')
# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)
# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)
目录
相关文章
|
24天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
2月前
|
机器学习/深度学习 自然语言处理 数据可视化
【由浅到深】从神经网络原理、Transformer模型演进、到代码工程实现
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。
148 11
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
359 7
|
2月前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
70 3
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
104 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
335 1

热门文章

最新文章