【Pytorch神经网络理论篇】 14 过拟合问题的优化技巧(一):基本概念+正则化+数据增大

简介: 【Pytorch神经网络理论篇】 14 过拟合问题的优化技巧(一):基本概念+正则化+数据增大

同学你好!本文章于2021年末编写,获得广泛的好评!

故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,


Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录


本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345


欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~

c0cc78b1be2244479f8c4df899b6cfb6.png


1 过拟合问题的描述


1.1 过拟合问题概述


深度额学习训练过程中,在训练阶段得到了较好的准确率,但在识别非数据集数据时存在精度下降的问题,这种现象称为过拟合现象。


主要原因:由于模型的拟合度过高,导致模型不仅学习样本的群体规律,也学习样本的个体规律。


1.2 过拟合问题模型的设计


1.2.1 构建数据集---Over_fitting.py(第1部分)


import sklearn.datasets
import torch
import numpy as np
import  matplotlib.pyplot as plt
from LogicNet_fun import LogicNet,moving_average,predict,plot_decision_boundary
# 1 构建数据集
np.random.seed(0) # 设置随机数种子
X , Y =sklearn.datasets.make_moons(40,noise=0.2) # 生成两组半圆形数据
arg = np.squeeze(np.argwhere(Y==0),axis=1) # 获取第1组数据索引
arg2 = np.squeeze(np.argwhere(Y==1),axis=1) # 获取第2组数据索引
# 显示数据
plt.title("train moons data")
plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+',label = 'data1')
plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o',label = 'data2')
plt.legend()
plt.show()


91dd9da0dc874357b10498bb2c0a6d92.png


1.2.2 搭建网络模型---Over_fitting.py(第2部分)


# 2 搭建网络模型
model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
optimizer = torch.optim.Adam(model.parameters(),lr=0.01) # 定义优化器:反向传播过程中使用。


1.2.3 训练模型,并将训练过程可视化---Over_fitting.py(第3部分)


# 3 训练模型+训练过程loss可视化
xt = torch.from_numpy(X).type(torch.FloatTensor) # 将numpy数据转化为张量
yt = torch.from_numpy(Y).type(torch.LongTensor) # 将numpy数据转化为张量
epochs = 1000 # 定义迭代次数
losses = [] # 损失值列表
for i in range(epochs):
    loss = model.getloss(xt,yt)
    losses.append(loss.item()) # 保存损失值中间状态
    optimizer.zero_grad() # 清空梯度
    loss.backward() # 反向传播损失值
    optimizer.step() # 更新参数
avgloss = moving_average(losses) # 获得损失值的移动平均值
plt.figure(1)
plt.subplot(211)
plt.xlabel('step number')
plt.ylabel('Training loss')
plt.title('step number vs Training loss')
plt.show()


1.2.4 将模型结果可视化,观察过拟合现象---Over_fitting.py(第4部分)


# 4 模型结果可视化,观察过拟合现象
plot_decision_boundary(lambda x: predict(model,x),X,Y)
from sklearn.metrics import accuracy_score
print("训练时的准确率",accuracy_score(model.predict(xt),yt))
# 重新生成两组半圆数据
Xtest,Ytest = sklearn.datasets.make_moons(80,noise=0.2)
plot_decision_boundary(lambda x: predict(model,x),Xtest,Ytest)
Xtest_t = torch.from_numpy(Xtest).type(torch.FloatTensor) # 将numpy数据转化为张量
Ytest_t = torch.from_numpy(Ytest).type(torch.LongTensor)
print("测试时准确率",accuracy_score(model.predict(Xtest_t),Ytest_t))


405a5e362bf944e7a2e3e092237865ff.png


1.2.5 模型代码总览---Over_fitting.py(总结)


#####Over_fitting.py
import sklearn.datasets
import torch
import numpy as np
import  matplotlib.pyplot as plt
from LogicNet_fun import LogicNet,moving_average,predict,plot_decision_boundary
# 1 构建数据集
np.random.seed(0) # 设置随机数种子
X , Y =sklearn.datasets.make_moons(40,noise=0.2) # 生成两组半圆形数据
arg = np.squeeze(np.argwhere(Y==0),axis=1) # 获取第1组数据索引
arg2 = np.squeeze(np.argwhere(Y==1),axis=1) # 获取第2组数据索引
# 显示数据
plt.title("train moons data")
plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+',label = 'data1')
plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o',label = 'data2')
plt.legend()
plt.show()
# 2 搭建网络模型
model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
optimizer = torch.optim.Adam(model.parameters(),lr=0.01) # 定义优化器:反向传播过程中使用。
# 3 训练模型+训练过程loss可视化
xt = torch.from_numpy(X).type(torch.FloatTensor) # 将numpy数据转化为张量
yt = torch.from_numpy(Y).type(torch.LongTensor) # 将numpy数据转化为张量
epochs = 1000 # 定义迭代次数
losses = [] # 损失值列表
for i in range(epochs):
    loss = model.getloss(xt,yt)
    losses.append(loss.item()) # 保存损失值中间状态
    optimizer.zero_grad() # 清空梯度
    loss.backward() # 反向传播损失值
    optimizer.step() # 更新参数
avgloss = moving_average(losses) # 获得损失值的移动平均值
plt.figure(1)
plt.subplot(211)
plt.xlabel('step number')
plt.ylabel('Training loss')
plt.title('step number vs Training loss')
plt.show()
# 4 模型结果可视化,观察过拟合现象
plot_decision_boundary(lambda x: predict(model,x),X,Y)
from sklearn.metrics import accuracy_score
print("训练时的准确率",accuracy_score(model.predict(xt),yt))
# 重新生成两组半圆数据
Xtest,Ytest = sklearn.datasets.make_moons(80,noise=0.2)
plot_decision_boundary(lambda x: predict(model,x),Xtest,Ytest)
Xtest_t = torch.from_numpy(Xtest).type(torch.FloatTensor) # 将numpy数据转化为张量
Ytest_t = torch.from_numpy(Ytest).type(torch.LongTensor)
print("测试时准确率",accuracy_score(model.predict(Xtest_t),Ytest_t))


LogicNet_fun.py


### LogicNet_fun.py
import torch.nn as nn #引入torch网络模型库
import torch
import numpy as np
import matplotlib.pyplot as plt
# 1.2 定义网络模型
class LogicNet(nn.Module): #继承nn.Module类,构建网络模型
    def __init__(self,inputdim,hiddendim,outputdim): #初始化网络结构 ===》即初始化接口部分
        super(LogicNet,self).__init__()
        self.Linear1 = nn.Linear(inputdim,hiddendim) #定义全连接层
        self.Linear2 = nn.Linear(hiddendim,outputdim) #定义全连接层
        self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数
    def forward(self,x):# 搭建用两个全连接层组成的网络模型 ===》 即正向接口部分:将网络层模型结构按照正向传播的顺序搭建
        x = self.Linear1(x)# 将输入传入第一个全连接层
        x = torch.tanh(x)# 将第一个全连接层的结果进行非线性变化
        x = self.Linear2(x)# 将网络数据传入第二个全连接层
        return x
    def predict(self,x):# 实现LogicNet类的预测窗口 ===》 即预测接口部分:利用搭建好的正向接口,得到模型预测结果
        #调用自身网络模型,并对结果进行softmax()处理,分别的出预测数据属于每一个类的概率
        pred = torch.softmax(self.forward(x),dim=1)# 将正向结果进行softmax(),分别的出预测结果属于每一个类的概率
        return torch.argmax(pred,dim=1)# 返回每组预测概率中最大的索引
    def getloss(self,x,y):# 实现LogicNet类的损失值接口 ===》 即损失值计算接口部分:计算模型的预测结果与真实值之间的误差,在反向传播时使用
        y_pred = self.forward(x)
        loss = self.criterion(y_pred,y)# 计算损失值的交叉熵
        return loss
# 1.5 训练可视化
def moving_average(a,w=10): #计算移动平均损失值
    if len(a) < w:
        return a[:]
    return [val if idx < w else sum(a[(idx - w):idx]) / w for idx, val in enumerate(a)]
def moving_average_to_simp(a,w=10): #
    if len(a) < w:
        return a[:]
    val_list = []
    for idx, val in enumerate(a):
        if idx < w:# 如果列表 a 的下标小于 w, 直接将元素添加进 xxx 列表
            val_list.append(val)
        else:#  向前取 10 个元素计算平均值, 添加到 xxx 列表
            val_list.append(sum(a[(idx - w):idx]) / w)
def plot_losses(losses):
    avgloss = moving_average(losses)#获得损失值的移动平均值
    plt.figure(1)
    plt.subplot(211)
    plt.plot(range(len(avgloss)),avgloss,'b--')
    plt.xlabel('step number')
    plt.ylabel('Training loss')
    plt.title('step number vs Training loss')
    plt.show()
# 1.7 数据可视化模型
def predict(model,x): #封装支持Numpy的预测接口
    x = torch.from_numpy(x).type(torch.FloatTensor)
    model = LogicNet(inputdim=2, hiddendim=3, outputdim=2)
    ans = model.predict(x)
    return ans.numpy()
def plot_decision_boundary(pred_func,X,Y): #在直角模型中实现预测结果的可视化
    #计算范围
    x_min ,x_max = X[:,0].min()-0.5 , X[:,0].max()+0.5
    y_min ,y_max = X[:,1].min()-0.5 , X[:,1].max()+0.5
    h=0.01
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    #根据数据输入进行预测
    Z = pred_func(np.c_[xx.ravel(),yy.ravel()])
    Z = Z.reshape(xx.shape)
    #将数据的预测结果进行可视化
    plt.contourf(xx,yy,Z,cmap=plt.cm.Spectral)
    plt.title("Linear predict")
    arg = np.squeeze(np.argwhere(Y==0),axis=1)
    arg2 = np.squeeze(np.argwhere(Y==1),axis=1)
    plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+')
    plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o')
    plt.show()


2 改善过拟合现象的方法


2.1 过拟合现象产生的原因


因为神经网络在训练过程中,只看到有限的信息,在数据量不足的情况下,无法合理地区分哪些属于个体特征,哪些属于群体特征。而在真实场景下,所有的样本特征都是多样的,很难在训练数据集中将所有的样本情况全部包括。


2.2 有效改善过拟合现象的方法


2.2.1 early stopping


在发生过拟合之前提前结束训l练。这个方法在理论上是可行的,但是这个结束的时间点不好把握。


2.2.2 数据集扩增(data augmentation)


让模型见到更多的情况,可以最大化满足全样本,但实际应用中,对于未来事件的颈测却显得力不丛心。


2.2.3 正则化


通过范数的概念,增强模型的泛化能力,包括L1正则化、L2正则化(L2正则化也称为weight decay).


2.2.4 dropout


每次训练时舍去一些节点来增强泛化能力


3 正则化

在神经网络计算损失值的过程中,在损失后面再加一项。这样损失值所代表的输出与标准结果间的误差就会受到干扰,导致学习参数w和b无法按照目标方向来调整。实现模型无法与样本完全拟合的结果,达到防止过拟合的效果。


3.1 正则化效果描述


不加正则化训练出来的模型:


bdc1c6726bdf4a028345297f19aa20d0.png


加了正则的模型表现


4d42a75c5eaf4d6dadacce252575c9dd.png


可以看到训练出来的模型太复杂,会影响使用,容易过拟合。


3.2 正则化的分类与公式


3.2.1 干扰项的特性


当欠拟合(模型的拟合能力不足)时,希望它对模型误差影响尽量小,让模型快速来拟合实际。

当过拟合(模型的拟合能力过强)时,希望它对模型误差影响尽量大,让模型不要产生过拟合的情况。


3.2.2 范数


L1:所有学习参数w的绝对值的和


L2:所有学习参数w的平方和,然后求平方根


3.2.3 正则化的损失函数-L1


69e60e6c2d5144d2b64c841030d6c6ab.png

173751a980404ee8abcfb117f59a3644.png


75e7a99a92074b6f8e34af363ca50169.png


3.2.4 正则化的损失函数-L2


e33c56062773403089faeb1d05e2632d.png


63a2e44f303f4e7983db15c717525b8c.png


977904309f2643f6817907c2d8582d77.png

e7f6eada6c6c4a4fa86b517616cce329.png


3.3 L2正则化的实现


3.3.1 正则化实现


使用weight_decay参数指定权重衰减率,相当于L2正则化中的正则化系数,用来调整正则化对loss的影响。


weight_decay参数默认对模型中的所有参数进行L2正则化处理,包括权重w和偏置b。


3.3.2 优化器参数的方式实现正则化:字典的方式实现


optimizer =torch.optim.Adam([{'params':weight_p,'weight_decay':0.001},
                            {'params':bias_p,'weight_decay':0}],
                             lr=0.01)


字典中的param以指的是模型中的权重。将具体的权重张量放入优化器再为参数weight_decay赋值,指定权重值哀减率,便可以实现为指定参数进行正则化处理。


如何获得权重张量weight_p与bias_p?


# 主要通过实例化后的模型对象得到
weight_p , bias_p =[],[]
for name , p in model.named_parameters():
    if 'bias' in name:
        bias_p += [p]
    else:
        weight_p += [p]


3.4 使用L2正则化改善模型的过拟合状况


3.4.1 修改Over_fitting.py 中的优化器部分


import sklearn.datasets
import torch
import numpy as np
import  matplotlib.pyplot as plt
from LogicNet_fun import LogicNet,moving_average,predict,plot_decision_boundary
# 1 构建数据集
np.random.seed(0) # 设置随机数种子
X , Y =sklearn.datasets.make_moons(40,noise=0.2) # 生成两组半圆形数据
arg = np.squeeze(np.argwhere(Y==0),axis=1) # 获取第1组数据索引
arg2 = np.squeeze(np.argwhere(Y==1),axis=1) # 获取第2组数据索引
# 显示数据
plt.title("train moons data")
plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+',label = 'data1')
plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o',label = 'data2')
plt.legend()
plt.show()
# 2 搭建网络模型
model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
#optimizer = torch.optim.Adam(model.parameters(),lr=0.01) # 定义优化器:反向传播过程中使用。
# 修改为:
#添加正则化处理
weight_p , bias_p =[],[]
for name , p in model.named_parameters(): # 获取模型中的所有参数及参数名字
    if 'bias' in name:
        bias_p += [p] # 收集偏置参数
    else:
        weight_p += [p] # 收集权重
optimizer =torch.optim.Adam([{'params':weight_p,'weight_decay':0.001},
                            {'params':bias_p,'weight_decay':0}],
                             lr=0.01) # 带有正则化处理的优化器


3.4.2 regularization01.py 总览


import sklearn.datasets
import torch
import numpy as np
import  matplotlib.pyplot as plt
from LogicNet_fun import LogicNet,moving_average,predict,plot_decision_boundary
# 1 构建数据集
np.random.seed(0) # 设置随机数种子
X , Y =sklearn.datasets.make_moons(40,noise=0.2) # 生成两组半圆形数据
arg = np.squeeze(np.argwhere(Y==0),axis=1) # 获取第1组数据索引
arg2 = np.squeeze(np.argwhere(Y==1),axis=1) # 获取第2组数据索引
# 显示数据
plt.title("train moons data")
plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+',label = 'data1')
plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o',label = 'data2')
plt.legend()
plt.show()
# 2 搭建网络模型
model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
#optimizer = torch.optim.Adam(model.parameters(),lr=0.01) # 定义优化器:反向传播过程中使用。
# 修改为:
#添加正则化处理
weight_p , bias_p =[],[]
for name , p in model.named_parameters(): # 获取模型中的所有参数及参数名字
    if 'bias' in name:
        bias_p += [p] # 收集偏置参数
    else:
        weight_p += [p] # 收集权重
optimizer =torch.optim.Adam([{'params':weight_p,'weight_decay':0.001},
                            {'params':bias_p,'weight_decay':0}],
                             lr=0.01) # 带有正则化处理的优化器
# 3 训练模型+训练过程loss可视化
xt = torch.from_numpy(X).type(torch.FloatTensor) # 将numpy数据转化为张量
yt = torch.from_numpy(Y).type(torch.LongTensor) # 将numpy数据转化为张量
epochs = 1000 # 定义迭代次数
losses = [] # 损失值列表
for i in range(epochs):
    loss = model.getloss(xt,yt)
    losses.append(loss.item()) # 保存损失值中间状态
    optimizer.zero_grad() # 清空梯度
    loss.backward() # 反向传播损失值
    optimizer.step() # 更新参数
avgloss = moving_average(losses) # 获得损失值的移动平均值
plt.figure(1)
plt.subplot(211)
plt.xlabel('step number')
plt.ylabel('Training loss')
plt.title('step number vs Training loss')
plt.show()
# 4 模型结果可视化,观察过拟合现象
plot_decision_boundary(lambda x: predict(model,x),X,Y)
from sklearn.metrics import accuracy_score
print("训练时的准确率",accuracy_score(model.predict(xt),yt))
# 重新生成两组半圆数据
Xtest,Ytest = sklearn.datasets.make_moons(80,noise=0.2)
plot_decision_boundary(lambda x: predict(model,x),Xtest,Ytest)
Xtest_t = torch.from_numpy(Xtest).type(torch.FloatTensor) # 将numpy数据转化为张量
Ytest_t = torch.from_numpy(Ytest).type(torch.LongTensor)
print("测试时准确率",accuracy_score(model.predict(Xtest_t),Ytest_t))


4 数据集扩增(data augmentation)


4.1 数据集增广


增加数据集


4.2 通过增大数据集的方式改善过拟合的状况


4.2.1 修改Over_fitting.py 中的优化器部分


# 2 搭建网络模型
model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
optimizer = torch.optim.Adam(model.parameters(),lr=0.01) # 定义优化器:反向传播过程中使用。
# 3 训练模型+训练过程loss可视化
# xt = torch.from_numpy(X).type(torch.FloatTensor) # 将numpy数据转化为张量
# yt = torch.from_numpy(Y).type(torch.LongTensor) # 将numpy数据转化为张量
# epochs = 1000 # 定义迭代次数
# losses = [] # 损失值列表
# for i in range(epochs):
#     loss = model.getloss(xt,yt)
#     losses.append(loss.item()) # 保存损失值中间状态
#     optimizer.zero_grad() # 清空梯度
#     loss.backward() # 反向传播损失值
#     optimizer.step() # 更新参数
# avgloss = moving_average(losses) # 获得损失值的移动平均值
# 修改为
epochs = 1000 # 定义迭代次数
losses = [] # 损失值列表
for i in range(epochs):
    X ,Y = sklearn.datasets.make_moons(40,noise=0.2)
    xt = torch.from_numpy(X).type(torch.FloatTensor)
    yt = torch.from_numpy(Y).type(torch.LongTensor)
    loss = model.getloss(xt,yt)
    losses.append(loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()


4.2.2 Data_increase.py


import sklearn.datasets
import torch
import numpy as np
import  matplotlib.pyplot as plt
from LogicNet_fun import LogicNet,moving_average,predict,plot_decision_boundary
# 1 构建数据集
np.random.seed(0) # 设置随机数种子
X , Y =sklearn.datasets.make_moons(40,noise=0.2) # 生成两组半圆形数据
arg = np.squeeze(np.argwhere(Y==0),axis=1) # 获取第1组数据索引
arg2 = np.squeeze(np.argwhere(Y==1),axis=1) # 获取第2组数据索引
# 显示数据
plt.title("train moons data")
plt.scatter(X[arg,0],X[arg,1],s=100,c='b',marker='+',label = 'data1')
plt.scatter(X[arg2,0],X[arg2,1],s=40,c='r',marker='o',label = 'data2')
plt.legend()
plt.show()
# 2 搭建网络模型
model = LogicNet(inputdim=2,hiddendim=500,outputdim=2) # 实例化模型,增加拟合能力将hiddendim赋值为500
optimizer = torch.optim.Adam(model.parameters(),lr=0.01) # 定义优化器:反向传播过程中使用。
# 3 训练模型+训练过程loss可视化
# xt = torch.from_numpy(X).type(torch.FloatTensor) # 将numpy数据转化为张量
# yt = torch.from_numpy(Y).type(torch.LongTensor) # 将numpy数据转化为张量
# epochs = 1000 # 定义迭代次数
# losses = [] # 损失值列表
# for i in range(epochs):
#     loss = model.getloss(xt,yt)
#     losses.append(loss.item()) # 保存损失值中间状态
#     optimizer.zero_grad() # 清空梯度
#     loss.backward() # 反向传播损失值
#     optimizer.step() # 更新参数
# avgloss = moving_average(losses) # 获得损失值的移动平均值
# 修改为
epochs = 1000 # 定义迭代次数
losses = [] # 损失值列表
for i in range(epochs):
    X ,Y = sklearn.datasets.make_moons(40,noise=0.2)
    xt = torch.from_numpy(X).type(torch.FloatTensor)
    yt = torch.from_numpy(Y).type(torch.LongTensor)
    loss = model.getloss(xt,yt)
    losses.append(loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
plt.figure(1)
plt.subplot(211)
plt.xlabel('step number')
plt.ylabel('Training loss')
plt.title('step number vs Training loss')
plt.show()
# 4 模型结果可视化,观察过拟合现象
plot_decision_boundary(lambda x: predict(model,x),X,Y)
from sklearn.metrics import accuracy_score
print("训练时的准确率",accuracy_score(model.predict(xt),yt))
# 重新生成两组半圆数据
Xtest,Ytest = sklearn.datasets.make_moons(80,noise=0.2)
plot_decision_boundary(lambda x: predict(model,x),Xtest,Ytest)
Xtest_t = torch.from_numpy(Xtest).type(torch.FloatTensor) # 将numpy数据转化为张量
Ytest_t = torch.from_numpy(Ytest).type(torch.LongTensor)
print("测试时准确率",accuracy_score(model.predict(Xtest_t),Ytest_t))
目录
相关文章
|
1月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 PyTorch 测试技术
从训练到推理:Intel Extension for PyTorch混合精度优化完整指南
PyTorch作为主流深度学习框架,凭借动态计算图和异构计算支持,广泛应用于视觉与自然语言处理。Intel Extension for PyTorch针对Intel硬件深度优化,尤其在GPU上通过自动混合精度(AMP)提升训练与推理性能。本文以ResNet-50在CIFAR-10上的实验为例,详解如何利用该扩展实现高效深度学习优化。
125 0
|
3月前
|
机器学习/深度学习 算法
PSO和GA优化BP神经网络参数
PSO和GA优化BP神经网络参数
100 5
|
28天前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
237 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
25天前
|
机器学习/深度学习 数据采集 算法
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
|
5月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
964 0
|
4月前
|
机器学习/深度学习 算法 PyTorch
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
135 16
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。

热门文章

最新文章

推荐镜像

更多