如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。

在深度学习领域,优化器的选择对模型性能至关重要。虽然PyTorch中的标准优化器如

SGD

Adam

AdamW

被广泛应用,但它们并非在所有情况下都是最优选择。本文将介绍四种高级优化技术,这些技术在某些任务中可能优于传统方法,特别是在面对复杂优化问题时。

我们将探讨以下算法:

  1. 序列最小二乘规划(SLSQP)
  2. 粒子群优化(PSO)
  3. 协方差矩阵自适应进化策略(CMA-ES)
  4. 模拟退火(SA)

这些方法的主要优势包括:

  1. 无梯度优化:适用于非可微操作,如采样、取整和组合优化。
  2. 仅需前向传播:通常比传统方法更快,且内存效率更高。
  3. 全局优化能力:有助于避免局部最优解。

需要注意的是,这些方法最适合优化参数数量较少(通常少于100-1000个)的情况。它们特别适用于优化关键参数、每层特定参数或超参数。

实验准备

在开始实验之前,我们需要设置环境并定义一些辅助函数。以下是必要的导入和函数定义:

 fromfunctoolsimportpartial
 fromcollectionsimportdefaultdict
 importtorch
 importtorch.nnasnn
 importtorch.optimasoptim
 importtorch.nn.functionalasF
 importnumpyasnp
 importscipy.optimizeasopt
 importmatplotlib.pyplotasplt

 # 设置随机种子以确保结果可复现
 torch.manual_seed(42) 
 np.random.seed(42)  

 # 辅助函数:在PyTorch模型和NumPy向量之间转换权重
 defset_model_weights_from_vector(model, numpy_vector):
     weight_vector=torch.tensor(numpy_vector, dtype=torch.float64)
     model[0].weight.data=weight_vector[0:4].reshape(2, 2)
     model[2].weight.data=weight_vector[4:8].reshape(2, 2)
     model[2].bias.data=weight_vector[8:10]
     returnmodel

 defget_vector_from_model_weights(model):
     returntorch.cat([
         model[0].weight.data.view(-1), 
         model[2].weight.data.view(-1), 
         model[2].bias.data]
     ).detach().numpy()

 # 用于跟踪和更新损失的函数
 defupdate_tracker(loss_tracker, optimizer_name, loss_val):
     loss_tracker[optimizer_name].append(loss_val)
     iflen(loss_tracker[optimizer_name]) >1:
         min_loss=min(loss_tracker[optimizer_name][-2], loss_val)
         loss_tracker[optimizer_name][-1] =min_loss
     returnloss_tracker

这些函数将用于在不同的优化算法之间转换模型权重,并跟踪优化过程中的损失。

接下来定义目标函数和PyTorch优化循环:

 defobjective(x, model, input, target, loss_tracker, optimizer_name):
     model=set_model_weights_from_vector(model, x)
     loss_val=F.mse_loss(model(input), target).item()
     loss_tracker=update_tracker(loss_tracker, optimizer_name, loss_val)  
     returnloss_val

 defpytorch_optimize(x, model, input, target, maxiter, loss_tracker, optimizer_name="Adam"):
     set_model_weights_from_vector(model, x)
     optimizer=optim.Adam(model.parameters(), lr=1.) 

     # 训练循环
     foriterationinrange(maxiter):  
         loss=F.mse_loss(model(input), target)
         optimizer.zero_grad()  
         loss.backward()        
         optimizer.step()
         loss_tracker=update_tracker(loss_tracker, optimizer_name, loss.item())  
     final_x=get_vector_from_model_weights(model)
     returnfinal_x, loss.item()

最后设置实验所需的通用变量:

 model=nn.Sequential(nn.Linear(2, 2, bias=False), nn.ReLU(), nn.Linear(2, 2, bias=True)).double()
 input_tensor=torch.randn(32, 2).double()  # 随机输入张量
 input_tensor[:, 1] *=1e3  # 增加一个变量的敏感度
 target=input_tensor.clone() # 目标是输入本身(恒等函数)
 num_params=10
 maxiter=100
 x0=0.1*np.random.randn(num_params)
 loss_tracker=defaultdict(list)

这些设置为我们的实验创建了一个简单的神经网络模型、定义了输入、目标和初始参数。

在下一部分中,我们将开始实现和比较不同的优化技术。

优化技术比较

1、PyTorch中的Adam优化器

作为基准,我们首先使用PyTorch的Adam优化器。Adam是一种自适应学习率优化算法,在深度学习中广泛使用。

 optimizer_name="PyTorch Adam"
 result=pytorch_optimize(x0, model, input_tensor, target, maxiter, loss_tracker, optimizer_name)
 print(f'Adam优化器最终损失: {result[1]}')

运行此代码后,我们得到以下结果:

 Adam优化器最终损失: 91.85612831226527

考虑到初始损失值约为300,000,这个结果在100次优化步骤后已经有了显著改善。

2、序列最小二乘规划 (SLSQP)

序列最小二乘规划(SLSQP)是一种强大的优化算法,特别适用于具有连续参数的问题。它通过在每一步构建二次近似来逼近最优解。

 optimizer_name="slsqp"
 args= (model, input_tensor, target, loss_tracker, optimizer_name)
 result=opt.minimize(objective, x0, method=optimizer_name, args=args, options={"maxiter": maxiter, "disp": False, "eps": 0.001})
 print(f"SLSQP优化器最终损失: {result.fun}")

运行SLSQP算法,我们获得以下结果:

 SLSQP优化器最终损失: 3.097042282788268

SLSQP的性能明显优于Adam,这表明在某些情况下,非传统优化方法可能更有效。

3、粒子群优化 (PSO)

粒子群优化(PSO)是一种基于群体智能的优化算法,其灵感来自于鸟群和鱼群的社会行为。PSO在非连续和非光滑的问题上表现尤为出色。

 frompyswarmimportpso

 lb=-np.ones(num_params)
 ub=np.ones(num_params)
 optimizer_name='pso'
 args= (model, input_tensor, target, loss_tracker, optimizer_name)
 result_pso=pso(objective, lb, ub, maxiter=maxiter, args=args)
 print(f"PSO优化器最终损失: {result_pso[1]}")

PSO的优化结果如下:

 PSO优化器最终损失: 1.0195048385714032

PSO的表现进一步超越了SLSQP,这凸显了在复杂优化问题中探索多种算法的重要性。

4、协方差矩阵自适应进化策略 (CMA-ES)

协方差矩阵自适应进化策略(CMA-ES)是一种高度复杂的优化算法,特别适用于难以处理的非凸优化问题。它通过自适应地学习问题的协方差结构来指导搜索过程。

 fromcmaimportCMAEvolutionStrategy

 es=CMAEvolutionStrategy(x0, 0.5, {"maxiter": maxiter, "seed": 42})
 optimizer_name='cma'
 args= (model, input_tensor, target, loss_tracker, optimizer_name)
 whilenotes.stop():
     solutions=es.ask()
     object_vals= [objective(x, *args) forxinsolutions]
     es.tell(solutions, object_vals)
 print(f"CMA-ES优化器最终损失: {es.result[1]}")

CMA-ES的优化结果如下:

 (5_w,10)-aCMA-ES (mu_w=3.2,w_1=45%) in dimension 10 (seed=42, Thu Oct 12 22:03:53 2024)  
 CMA-ES优化器最终损失: 4.084718909553896

虽然CMA-ES在这个特定问题上没有达到最佳性能,但它在处理复杂的多模态优化问题时通常表现出色。

5、 模拟退火 (SA)

模拟退火(SA)是一种受冶金学启发的优化算法,它模拟了金属冷却和退火过程。SA在寻找全局最优解方面特别有效,能够避免陷入局部最优解。

 fromscipy.optimizeimportdual_annealing
 bounds= [(-1, 1)] *num_params
 optimizer_name='simulated_annealing'
 args= (model, input_tensor, target, loss_tracker, optimizer_name)
 result=dual_annealing(objective, bounds, maxiter=maxiter, args=args, initial_temp=1.)
 print(f"SA优化器最终损失: {result.fun}")

SA的优化结果如下:

 SA优化器最终损失: 0.7834294257939689

可以看到,针对我们的问题SA表现最佳,这突显了其在复杂优化问题中的潜力。

下面我们来可视化这些优化器的性能,并讨论结果的含义。

结果可视化与分析

为了更好地理解各种优化算法的性能,我们将使用matplotlib库来可视化优化过程中的损失变化。

 plt.figure(figsize=(10, 6))
 line_styles= ['-', '--', '-.', ':']
 fori, (optimizer_name, losses) inenumerate(loss_tracker.items()):
     plt.plot(np.linspace(0, maxiter, len(losses)), losses, 
              label=optimizer_name, 
              linestyle=line_styles[i%len(line_styles)], 
              linewidth=5,
     )
 plt.xlabel("Iteration", fontsize=20)
 plt.ylabel("Loss", fontsize=20)
 plt.ylim(1e-1, 1e7)
 plt.yscale('log')
 plt.title("Loss For Different Optimizers", fontsize=20)
 plt.grid(True, linestyle='--', alpha=0.6)
 plt.legend(loc='upper right', fontsize=20)
 plt.tight_layout()
 plt.savefig('optimizers.png')
 plt.show()

执行上述代码后,我们得到了以下可视化结果:

结果分析

  1. Adam优化器:作为基准Adam表现稳定但收敛速度相对较慢。这反映了在某些复杂问题中,传统梯度下降方法可能不是最优选择。
  2. SLSQP:序列最小二乘规划表现出快速的初始收敛,这表明它在处理具有连续参数的问题时非常有效。
  3. PSO:粒子群优化展示了良好的全局搜索能力,能够迅速找到较好的解。这凸显了其在非凸优化问题中的潜力。
  4. CMA-ES:虽然在本实验中收敛较慢,但协方差矩阵自适应进化策略通常在处理高度复杂和多模态的问题时表现出色。其性能可能在更复杂的优化场景中更为突出。
  5. 模拟退火:我们这个特定问题SA表现最为出色,仅用几次迭代就达到了最低损失。这突显了其在避免局部最优解并快速找到全局最优解方面的优势。

需要注意的是,每种算法的"迭代"定义可能不同,因此直接比较迭代次数可能不够公平。例如SA的每次迭代可能包含多次目标函数评估。

总结

在特定问题上,非传统优化方法可能比标准的梯度下降算法(如Adam)表现更好。然而,这并不意味着这些方法在所有情况下都优于传统方法。选择最适合的优化算法应基于具体问题的特性:

  1. 对于参数数量较少(100-1000个)的优化问题,考虑尝试本文介绍的高级优化技术。
  2. 在处理非可微操作或复杂的损失景观时,无梯度方法(如PSO、CMA-ES和SA)可能更有优势。
  3. 对于需要满足复杂约束的优化问题,SLSQP可能是一个很好的选择。
  4. 在计算资源有限的情况下,考虑使用仅需前向传播的方法,如PSO或SA。
  5. 对于高度非凸的问题,CMA-ES和SA可能更容易找到全局最优解。

最后,建议在实际应用中对多种优化方法进行比较和测试,以找到最适合特定问题的算法。同时要注意这些高级方法在大规模问题(参数数量超过1000)上可能面临计算效率的挑战。

未来研究方向

  1. 探索这些高级优化技术在更复杂的深度学习模型中的应用。
  2. 研究如何有效地将这些方法与传统的梯度下降算法结合,以开发混合优化策略。
  3. 开发更高效的并行化实现,以提高这些算法在大规模问题上的适用性。
  4. 探索这些方法在特定领域(如强化学习、神经架构搜索)中的潜在应用。

通过深入理解和灵活运用这些高级优化技术,研究者和工程师可以在面对复杂优化问题时拓展解决方案的范围,potentially unlocking新的性能水平和应用可能性。

参考文献

  1. Hansen, N. (2016). The CMA Evolution Strategy: A Tutorial. arXiv preprint arXiv:1604.00772.
  2. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942-1948.
  3. Nocedal, J., & Wright, S. J. (1999). Numerical Optimization. New York: Springer.
  4. Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica A: Statistical Mechanics and its Applications, 233(1-2), 395-406.
  5. Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
  6. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

https://avoid.overfit.cn/post/d9fedfc22d594ba0a2b7e6a896adcf6c

目录
相关文章
|
2月前
|
机器学习/深度学习 PyTorch 测试技术
从训练到推理:Intel Extension for PyTorch混合精度优化完整指南
PyTorch作为主流深度学习框架,凭借动态计算图和异构计算支持,广泛应用于视觉与自然语言处理。Intel Extension for PyTorch针对Intel硬件深度优化,尤其在GPU上通过自动混合精度(AMP)提升训练与推理性能。本文以ResNet-50在CIFAR-10上的实验为例,详解如何利用该扩展实现高效深度学习优化。
120 0
|
4月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
594 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
5月前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
836 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
24天前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
216 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
24天前
|
机器学习/深度学习 存储 人工智能
深度解析大模型压缩技术:搞懂深度学习中的减枝、量化、知识蒸馏
本文系统解析深度学习模型压缩三大核心技术:剪枝、量化与知识蒸馏,详解如何实现模型缩小16倍、推理加速4倍。涵盖技术原理、工程实践与组合策略,助力AI模型高效部署至边缘设备。
279 0
|
5月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
936 0
|
5月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
608 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
95 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
|
4月前
|
机器学习/深度学习 算法 PyTorch
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
131 16
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南

推荐镜像

更多