数学奥赛狂砍10题!Meta发布全新定理证明器:AI即将接管数学?

简介: 数学奥赛狂砍10题!Meta发布全新定理证明器:AI即将接管数学?
【新智元导读】人类主导的数学领域也要被AI攻克了?


张益唐教授最近发布的论文宣布攻克「郎道-西格尔零点猜想问题」,着实让数学之美火出了圈。


实际上每个定理的证明都需要天才般的灵感不断尝试论灵感一现,机器永远也比不上人类;但论刻苦能力,那AI模型可以甩人类十条街,给它资料它真学啊!


长期以来,科学界也一直将「AI能够自动进行定理证明」视为制造智能机器的关键一步。


要证明一个特定的猜想是真是假,需要用到符号推理,并在无数可能种可用方法中选择一条正常的方向。


最近Meta在NeurIPS 2022上发布了一个神经定理证明器(neural theorem prover),成功解决了10道国际数学奥林匹克(IMO)的问题,比之前最强的AI系统高5倍。该模型还在miniF2F数据集上比当前最先进的模型性能提高20%,在Metamath基准上提高10%


论文链接:https://arxiv.org/pdf/2205.11491.pdf


文中提出的全新搜索算法——超树证明搜索(HyperTree Proof Search, HTPS)灵感来自于AlphaZero


通过在线学习,HTPS在一个包含大量成功数学证明的数据集上学习搜索,使其能够泛化远离训练集的领域,即在新的且不同种类的问题仍然可用,最终HTPS能够对一个包含有限种情况的IMO问题推导出一个正确的证明。


实验结果表明,仅用HTPS算法就可以证明65.4%的Metamath定理,大大超过了之前GPT-f的56.5%的水平,对这些未被证明的定理进行的在线训练可以将准确率提高到82.6%



研究人员通过Lean Visual Studio Code插件提供了该模型,其他研究者可以在流行的Lean环境中继续探索该人工智能模型的功能。


数学题vs下围棋


国际数学奥林匹克IMO是世界首屈一指的高中数学竞赛。


自1959年以来,来自中学的学生们需要解决代数、组合数学、数论和几何中具有挑战性的问题,想要完成题目需要创造力和强大的推理技能,但有些问题太难了,以至于大多数学生都只能得零分


专家们长期以来一直认为,想要建立一个可以在IMO中与人类抗衡的AI系统是一个巨大的挑战。


总体来说,定理证明比下围棋、国际象棋这样的棋盘游戏更具挑战性。


首先,当模型试图证明一个定理时,每一步可能的action空间不是很大,而是无穷大。


并且在国际象棋或围棋比赛中,即便某一步没有找到最优解,最终仍然有可能赢得对局;而对于定理证明来说,死胡同就是死胡同,一步做错,满盘皆输,之前的所有计算工作全是白费力气。


同时数学题中也可能存在特殊的解题方法,对于人类来说,可能属于最简单的一类问题,但从AI的角度来看,这种方法因为其特殊性,在标准训练数据中很少出现,所以AI很难学会。「暴力搜索」对这种无穷大的搜索空间来说也无能为力。


无论对人还是机器来说,想解决这类问题,必须依靠「创造性推理」方法。


之所以会出现这类问题,是因为之前的定理证明器过于依赖语言模型,虽然GPT-3等可以解决部分数学题,但它仍然探索不同方法的能力,这种技能对于解决需要「创造力」的数学问题来说至关重要。


接近人类的推理能力


数学推理的过程很难写,但更难量化。


目前相关研究方法主要集中在制造能够「立刻」解决问题的AI算法,即在一个step中生成一个完整的问题解决方案。


很明显,人肯定不是这么做数学题的,人类需要利用直觉,把一个复杂的问题分解成多个子问题,然后寻找增量式解决的方法。


为了模拟一种更「类人」的方法,需要神经定理证明程序将特定的「状态」与当前「对问题不完全的理解」联系起来。


研究人员采取的方法是利用强化学习与现有的证明辅助(如 Lean)结合搭建训练环境。


计算机证明辅助实现了一个逐步的推理机制,可以将(不完全)证明的「当前状态」解释为图中的一个节点,并将每个新步骤解释为一个边,这种方法已被证明是对围棋或国际象棋等双人游戏非常有效的技术。


最后,还需要一种方法来评估证明状态的质量,类似于下棋的人工智能需要评估游戏中的每个位置对于局势的影响。


研究人员使用了蒙特卡罗树搜索(MCTS)启发的方法,其中模型在两个任务之间循环:1)在给定的证明状态下使用的合理参数的先验估计;2)给定一定数量的参数后的证明结果。



HTPS 是标准 MCTS 方法的一个变体。在这种方法中,为了探索一个图,人们利用关于图的先验知识来选择一组叶子来展开,然后通过备份校正来精炼初始知识。图是逐步探索的,关于图结构的知识通过迭代得到细化。



这样就可以使用在线训练程序,从而大大提高最初预训练的模型在某一类问题上的表现,即可以解决类似于IMO竞赛中的问题。


最后的实验结果显示,该方法能够解决10个未见过的IMO问题,并且在Minif2f验证集准确性方面达到67% 的准确性ーー比目前公布的最新技术水平高出整整20% 。


从软件验证到航空航天


制造出能够解决高等数学问题的AI模型将对现实世界产生影响,尤其是在软体验证领域。


许多公司(包括 Meta)都在使用形式证明来验证软件。事实上,用于验证软件和证明定理的工具和形式系统是相同的,主要区别在于模型所依据的数据类型: 函数数据集或数学定理。


除了软体验证,还有许多工业应用,尤其是在复杂性不断增加、自动化渗透到关键任务中的情况下,包括密码学和航空航天,其中操作条件可以变化,测试和模拟是至关重要的。


参考资料:https://ai.facebook.com/blog/ai-math-theorem-proving/

相关文章
|
5天前
|
人工智能 自然语言处理 API
Mathtutor on Groq:AI 数学辅导工具,实时计算并展示解题过程,支持通过语音提出数学问题
Mathtutor on Groq 是一款基于 Groq 架构的 AI 数学辅导工具,支持语音输入数学问题,实时计算并渲染解题过程,适用于代数、微积分等领域的学习和教学辅助。
33 5
Mathtutor on Groq:AI 数学辅导工具,实时计算并展示解题过程,支持通过语音提出数学问题
|
3天前
|
机器学习/深度学习 人工智能 算法
UCLA、MIT数学家推翻39年经典数学猜想!AI证明卡在99.99%,人类最终证伪
近日,加州大学洛杉矶分校和麻省理工学院的数学家团队成功推翻了存在39年的“上下铺猜想”(Bunkbed Conjecture),该猜想由1985年提出,涉及图论中顶点路径问题。尽管AI在研究中发挥了重要作用,但最终未能完成证明。人类数学家通过深入分析与创新思维,找到了推翻猜想的关键证据,展示了人类智慧在数学证明中的不可替代性。成果发表于arXiv,引发了关于AI在数学领域作用的广泛讨论。
113 89
|
17天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
64 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
Meta AI推出的Llama 3.3是一款70B参数的纯文本语言模型,支持多语言对话,具备高效、低成本的特点,适用于多种应用场景,如聊天机器人、客户服务自动化、语言翻译等。
77 13
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
|
23天前
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
51 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
|
19天前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
50 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
30天前
|
机器学习/深度学习 存储 人工智能
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。
49 9
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
|
22天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
67 12
|
2月前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
69 3
|
3月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。