多路径多领域通吃!谷歌AI发布多领域学习通用模型MDL

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 多路径多领域通吃!谷歌AI发布多领域学习通用模型MDL
【新智元导读】研究人员提出了一种多路径神经架构搜索(MPNAS)方法,为多领域建立一个具有异质网络架构的统一模型。


面向视觉任务(如图像分类)的深度学习模型,通常用来自单一视觉域(如自然图像或计算机生成的图像)的数据进行端到端的训练。

一般情况下,一个为多个领域完成视觉任务的应用程序需要为每个单独的领域建立多个模型,分别独立训练,不同领域之间不共享数据,在推理时,每个模型将处理特定领域的输入数据。即使是面向不同领域,这些模型之间的早期层的有些特征都是相似的,所以,对这些模型进行联合训练的效率更高。这能减少延迟和功耗,降低存储每个模型参数的内存成本,这种方法被称为多领域学习(MDL)。此外,MDL模型也可以优于单领域模型,在一个域上的额外训练,可以提高模型在另一个域上的性能,这称为「正向知识迁移」,但也可能产生负向知识转移,这取决于训练方法和具体的领域组合。虽然以前关于MDL的工作已经证明了跨领域联合学习任务的有效性,但它涉及到一个手工制作的模型架构,应用于其他工作的效率很低。论文链接:https://arxiv.org/pdf/2010.04904.pdf为了解决这个问题,在「Multi-path Neural Networks for On-device Multi-domain Visual Classification」一文中,谷歌研究人员提出了一个通用MDL模型。文章表示,该模型既可以有效地实现高精确度,减少负向知识迁移的同时,学习增强正向的知识迁移,在处理各种特定领域的困难时,可以有效地优化联合模型。为此,研究人员提出了一种多路径神经架构搜索(MPNAS)方法,为多领域建立一个具有异质网络架构的统一模型。该方法将高效的神经结构搜索(NAS)方法从单路径搜索扩展到多路径搜索,为每个领域联合寻找一条最优路径。

同时引入一个新的损失函数,称为自适应平衡域优先化(ABDP),它适应特定领域的困难,以帮助有效地训练模型。由此产生的MPNAS方法是高效和可扩展的。新模型在保持性能不下降的同时,与单领域方法相比,模型大小和FLOPS分别减少了78%和32%。

多路径神经结构搜索


为了促进正向知识迁移,避免负向迁移,传统的解决方案是,建立一个MDL模型,使各域共享大部分的层,学习各域的共享特征(称为特征提取),然后在上面建一些特定域的层。然而,这种特征提取方法无法处理具有明显不同特征的域(如自然图像中的物体和艺术绘画)。另一方面,为每个MDL模型建立统一的异质结构是很耗时的,而且需要特定领域的知识。

多路径神经搜索架构框架NAS是一个自动设计深度学习架构的强大范式。它定义了一个搜索空间,由可能成为最终模型一部分的各种潜在构建块组成。搜索算法从搜索空间中找到最佳的候选架构,以优化模型目标,例如分类精度。最近的NAS方法(如TuNAS)通过使用端到端的路径采样,提高了搜索效率。受TuNAS的启发,MPNAS在两个阶段建立了MDL模型架构:搜索和训练。在搜索阶段,为了给每个领域共同找到一条最佳路径,MPNAS为每个领域创建了一个单独的强化学习(RL)控制器,它从超级网络(即由搜索空间定义的候选节点之间所有可能的子网络的超集)中采样端到端的路径(从输入层到输出层)。在多次迭代中,所有RL控制器更新路径,以优化所有领域的RL奖励。在搜索阶段结束时,我们为每个领域获得一个子网络。最后,所有的子网络被结合起来,为MDL模型建立一个异质结构,如下图所示。由于每个域的子网络是独立搜索的,所以每一层的构件可以被多个域共享(即深灰色节点),被单个域使用(即浅灰色节点),或者不被任何子网络使用(即点状节点)。每个域的路径在搜索过程中也可以跳过任何一层。鉴于子网络可以以优化性能的方式自由选择沿路使用的区块,输出网络既是异质的又是高效的。下图展示了Visual Domain Decathlon的其中两个领域的搜索架构。Visual Domain Decathlon是CVPR 2017中的PASCAL in Detail Workshop Challenge的一部分,测试了视觉识别算法处理(或利用)许多不同视觉领域的能力。可以看出,这两个高度相关的域(一个红色,另一个绿色)的子网,从它们的重叠路径中共享了大部分构建块,但它们之间仍然存在差异。

图中红色和绿色路径分别代表 ImageNet 和Describable Textures的子网络,深粉色节点代表多个域共享的块,浅粉色节点代表每条路径使用的块。图中的“dwb”块代表 dwbottleneck 块。图中的Zero块表示子网跳过该块下图展示了上文提到的两个领域的路径相似性。相似度通过每个域的子网之间的Jaccard相似度得分来衡量,其中越高意味着路径越相似。图为十个域的路径之间的Jaccard相似度得分的混淆矩阵。分值范围为0到1,分值越大表示两条路径共享的节点越多。

训练异构多域模型


在第二阶段,MPNAS 产生的模型将针对所有领域从头开始训练。为此,有必要为所有领域定义一个统一的目标函数。为了成功处理各种各样的领域,研究人员设计了一种算法,该算法在整个学习过程中进行调整,以便在各个领域之间平衡损失,称为自适应平衡领域优先级 (ABDP)。下面展示了在不同设置下训练的模型的准确率、模型大小和FLOPS。我们将MPNAS与其他三种方法进行比较:

独立于域的 NAS:分别为每个域搜索和训练模型。 单路径多头:使用预训练模型作为所有域的共享主干,每个域都有单独的分类头。 多头 NAS:为所有域搜索统一的骨干架构,每个域都有单独的分类头。

从结果中,我们可以观察到NAS需要为每个域构建一组模型,从而导致模型很大。尽管单路径多头和多头NAS可以显着降低模型大小和FLOPS,但强制域共享相同的主干会引入负面的知识转移,从而降低整体准确性。相比之下,MPNAS可以构建小而高效的模型,同时仍保持较高的整体精度。MPNAS的平均准确率甚至比领域独立的NAS方法高1.9%,因为该模型能够实现积极的知识转移。下图比较了这些方法的每个域top-1准确度。评估表明,通过使用 ABDP 作为搜索和训练阶段的一部分,top-1 的准确率从 69.96% 提高到 71.78%(增量:+1.81%)。

‍未来方向

MPNAS是构建异构网络以解决MDL中可能的参数共享策略的数据不平衡、域多样性、负迁移、域可扩展性和大搜索空间的有效解决方案。通过使用类似MobileNet的搜索空间,生成的模型也对移动设备友好。对于与现有搜索算法不兼容的任务,研究人员正继续扩展MPNAS用于多任务学习,并希望用MPNAS来构建统一的多域模型。


参考资料:https://ai.googleblog.com/2022/08/building-efficient-multiple-visual.html

相关实践学习
基于ECS和NAS搭建个人网盘
本场景主要介绍如何基于ECS和NAS快速搭建个人网盘。
阿里云文件存储 NAS 使用教程
阿里云文件存储(Network Attached Storage,简称NAS)是面向阿里云ECS实例、HPC和Docker的文件存储服务,提供标准的文件访问协议,用户无需对现有应用做任何修改,即可使用具备无限容量及性能扩展、单一命名空间、多共享、高可靠和高可用等特性的分布式文件系统。 产品详情:https://www.aliyun.com/product/nas
相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
当大火的文图生成模型遇见知识图谱,AI画像趋近于真实世界
本文介绍了阿里云机器学习PAI团队开发的名为ARTIST的中文文图生成模型,该模型融合了知识图谱信息,能够生成更加符合常识的图像。ARTIST基于Transformer架构,将文图生成任务分为图像矢量量化和文本引导的图像序列生成两个阶段。在第一阶段,模型使用VQGAN对图像进行矢量量化;在第二阶段,通过GPT模型并结合知识图谱中的实体知识来生成图像序列。在MUGE中文文图生成评测基准上,ARTIST表现出色,其生成效果优于其他模型。此外,EasyNLP框架提供了简单易用的接口,用户可以基于公开的Checkpoint进行少量领域相关的微调,实现各种艺术创作。
|
3天前
|
人工智能 NoSQL atlas
Fireworks AI和MongoDB:依托您的数据,借助优质模型,助力您开发高速AI应用
我们欣然宣布MongoDB与 Fireworks AI 正携手合作让客户能够利用生成式人工智能 (AI)更快速、更高效、更安全地开展创新活动
1315 1
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
构建未来:AI在持续学习系统中的创新应用
【5月更文挑战第11天】 随着人工智能(AI)技术的飞速发展,其在教育领域的应用日益增多。特别是在持续学习系统(Lifelong Learning Systems, LLS)中,AI技术正开启着个性化和适应性教学的新篇章。本文聚焦于AI在LLS中的创新应用,探讨了机器学习、自然语言处理和认知建模等关键技术如何共同作用于构建智能化的学习环境。文章旨在分析当前AI技术在持续学习领域的最新进展,并展望其对未来教育模式的影响。
|
3天前
|
机器学习/深度学习 人工智能 自动驾驶
构建未来:AI在持续学习系统中的创新应用
【5月更文挑战第11天】 在人工智能的迅猛发展浪潮中,一个不断进化的分支便是AI在持续学习系统中的应用。本文旨在探讨AI技术如何革新持续学习系统,并分析其在不同领域的创新实践。文章首先界定了持续学习系统的概念,随后深入解析了深度学习、强化学习以及转移学习等关键技术在其中的作用。通过案例分析,展示了这些技术如何在医疗诊断、自动驾驶及个性化教育中发挥至关重要的角色。最终,讨论了面临的挑战与未来的发展趋势,为读者提供了一个关于AI在持续学习领域未来可能展开的蓝图。
20 1
|
3天前
|
人工智能 vr&ar
[译][AI Research] AI 模型中的“it”是数据集
模型效果的好坏,最重要的是数据集,而不是架构,超参数,优化器。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型和传统ai的区别
在人工智能(AI)领域,大模型一直是一个热议的话题。从之前的谷歌 DeepMind、百度 Big. AI等,再到今天的百度GPT-3,人工智能技术经历了从“有”到“大”的转变。那么,大模型与传统 ai的区别在哪里?这对未来人工智能发展会产生什么影响?
|
3天前
|
人工智能 监控 安全
在园区引入AI大模型
5月更文挑战第5天
19 0
|
3天前
|
机器学习/深度学习 存储 人工智能
构建未来:AI在持续学习系统中的进化之路
【5月更文挑战第8天】 随着人工智能(AI)技术的飞速发展,AI系统正逐步从单一任务处理转向多任务、持续学习的智能体。本文将深入探讨AI技术在持续学习系统中的最新进展,包括深度学习、强化学习以及转移学习等关键技术。文章还将讨论如何通过这些技术实现AI系统的适应性、泛化能力和自我进化,从而推动AI在多变环境中的长期应用和自主决策能力。
|
3天前
|
存储 机器学习/深度学习 人工智能
RAG:AI大模型联合向量数据库和 Llama-index,助力检索增强生成技术
RAG:AI大模型联合向量数据库和 Llama-index,助力检索增强生成技术
RAG:AI大模型联合向量数据库和 Llama-index,助力检索增强生成技术
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
对大模型和AI的认识与思考
2023年,笔者也参与了各种学习和实践,从大语言模型、多模态算法,文生图(Stable Diffusion)技术,到prompt工程实践和搭建文生图(Stable Diffusion)webui实操环境。在此对谈谈对大模型和AI的认识与思考,是为总结。5月更文挑战第3天
31 1