【缺陷检测】基于计算机视觉实现芯片缺陷检测附matlab代码

简介: 【缺陷检测】基于计算机视觉实现芯片缺陷检测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

文章应用机器视觉技术,采集回流之前的球栅阵列(BGA)芯片图像,对图像进行预处理后,运用点分析方法对图像中各个焊球区域进行标记,建立判断标准并依次序对这些信息进行比对,从而判断芯片合格与否,并对不合格芯片判断其缺陷类型;研究采用MATLAB完成图像预处理以及具体的检测程序编写;实验结果证明,此方法可以正确识别缺陷类型,在检测速度以及可靠性方面有很好的保证.

⛄ 部分代码

% Program to find the two lung regions in a CT cross sectional image.

clc;    % Clear the command window.

close all;  % Close all figures (except those of imtool.)

imtool close all;  % Close all imtool figures if you have the Image Processing Toolbox.

clear;  % Erase all existing variables. Or clearvars if you want.

workspace;  % Make sure the workspace panel is showing.

format long g;

format compact;

fontSize = 22;


%===============================================================================

% Check that user has the Image Processing Toolbox installed.

hasIPT = license('test', 'image_toolbox');

if ~hasIPT

% User does not have the toolbox installed.

message = sprintf('Sorry, but you do not seem to have the Image Processing Toolbox.\nDo you want to try to continue anyway?');

reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes');

if strcmpi(reply, 'No')

% User said No, so exit.

return;

end

end


%===============================================================================

% 读取芯片图像.

folder = pwd;

baseFileName = 'sr.bmp';

% Get the full filename, with path prepended.

fullFileName = fullfile(folder, baseFileName);

% Check if file exists.

if ~exist(fullFileName, 'file')

% File doesn't exist -- didn't find it there.  Check the search path for it.

fullFileNameOnSearchPath = baseFileName; % No path this time.

if ~exist(fullFileNameOnSearchPath, 'file')

% Still didn't find it.  Alert user.

errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);

uiwait(warndlg(errorMessage));

return;

end

end

grayImage = imread(fullFileName);

% Get the dimensions of the image.  

% numberOfColorBands should be = 1.

[rows, columns, numberOfColorBands] = size(grayImage);

if numberOfColorBands > 1

% It's not really gray scale like we expected - it's color.

% Convert it to gray scale.

grayImage = rgb2gray(grayImage); % Take green channel.

end

% 对图像进行中值滤波

% grayImage = medfilt2(grayImage,[5,5]);

% Display the original gray scale image.

subplot(2, 3, 1);

imshow(grayImage,[]);

axis on;

title('Original Grayscale Image', 'FontSize', fontSize);

% Enlarge figure to full screen.

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);

% Give a name to the title bar.

set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off')

⛄ 运行结果

⛄ 参考文献

[1] 夏链, 贾伟妙, 崔鹏,等. 基于机器视觉的BGA芯片缺陷检测及其MATLAB实现[J]. 合肥工业大学学报:自然科学版, 2009, 32(11):4.

[2] 吴文轩, 陈方斯, 刘建锋,等. 基于MATLAB软件的图像处理技术在电子元器件引脚缺陷检测的应用[J]. 福建轻纺, 2018(1):5.

[3] 杨飞, 祝诗平, 邱青苗. 基于计算机视觉的花椒外观品质检测及其MATLAB实现[J]. 农业工程学报, 2008, 24(1):5.

[4] 李帮建. 基于计算机视觉的表面缺陷检测及应用[D]. 东南大学, 2016.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
3月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
1月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
25天前
|
机器学习/深度学习 传感器 算法
行人闯红灯检测:基于计算机视觉与深度学习的智能交通解决方案
随着智能交通系统的发展,传统的人工交通违法判断已难以满足需求。本文介绍了一种基于计算机视觉与深度学习的行人闯红灯自动检测系统,涵盖信号灯状态检测、行人检测与跟踪、行为分析及违规判定与报警四大模块,旨在提升交通管理效率与安全性。
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
59 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
2月前
|
计算机视觉 Python
计算机视觉---数字图像代码示例
计算机视觉---数字图像代码示例
50 0
|
3月前
|
人工智能 计算机视觉
AI计算机视觉笔记十五:编写检测的yolov5测试代码
该文为原创文章,如需转载,请注明出处。本文作者在成功运行 `detect.py` 后,因代码难以理解而编写了一个简易测试程序,用于加载YOLOv5模型并检测图像中的对象,特别是“人”类目标。代码实现了从摄像头或图片读取帧、进行颜色转换,并利用YOLOv5进行推理,最后将检测框和置信度绘制在输出图像上,并保存为 `result.jpg`。如果缺少某些模块,可使用 `pip install` 安装。如涉及版权问题或需获取完整代码,请联系作者。
|
4月前
|
存储 Serverless
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】