AI计算机视觉笔记一:YOLOV5疲劳驾驶行为检测

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 如何使用云服务器AutoDL进行深度学习模型的训练,特别是针对YOLOV5疲劳驾驶行为训练检测

若该文为原创文章,转载请注明原文出处。

一般情况下,大部分人的电脑都是没有cpu的,cpu也是可以训练的,但花费的时间太长,实际200张图片,使用CPU训练300轮花了3天,本章记录使用云服务器来训练自己的数据集。

使用的云服务器是AutoDL,一直在使用,性价比还是比较高的。

AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL

一、准备数据集

数据集可以自己拍照,也可以网上找,博主在网上找到了一份疲劳驾驶行为的图片,直接拿过来用了,共有2千多张。
image.png
准备好数据后需要数据标注,数据标注是大部分人工智能算法得以有效运行的关键环节。数据标注的过程是通过人工贴标的方式,为机器系统可供学习的样本。yolov5标注使用的是labelimg软件。

需要数据集,下方评论或@博主。标注数据是在本地电脑操作,标注后才把数据上传到云服务器训练

二、labelimg

1、激活环境

conda activate yolo

2、安装labelimg

使用pip 安装

pip install labelimg

安装后,在终端输入labelimg启动软件

image.png

3、标注

标记完成的数据请按照下面的格式进行放置,方便程序进行索引。
colo128
├─ images
│ ├─ test # 下面放测试集图片
│ ├─ train # 下面放训练集图片
│ └─ val # 下面放验证集图片
└─ labels
├─ test # 下面放测试集标签
├─ train # 下面放训练集标签
├─ val # 下面放验证集标签

3.1 打开图片及设置标注文件保存的目录并设置自动保存,这里需要主要选择yolo格式
image.png

3.2 开始标注,画框,标记目标的label,crtl+s保存,然后d切换到下一张继续标注,不断重复重复
image.png
标注完成后,把colo128打包压缩下,准备上传到服务器。

三、训练数据集

1、注册AutoDL

自行注册,云服务可以按时收费,也可以其他方式,自己选择。
image.png

2、创建实例

配置选择,选择的是3090,也可以其他,我比较喜欢就是直接选择好社区镜像,就给你创建好环境
image.png

创建后开启,可以通过多种方式登录,为了方便,直接使用JupyterLab
image.png

3、上传数据集和下载YOLOV5-5.0

删除环境自带的yolov5版本,然后下载yolov5-5.0版本,并上传到服务器,可以直接拖进去,并把标注好的数据也一并上传。
image.png

4、修改配置文件

博主是 基于colo128配置文件训练的,这里需要修改两个文件

修改文件一:复制yolov5-5.0/data/colo128.yaml为pilao_coco128.yaml

# 修改一:数据集路径
train: ../coco128/images/train2017/  # 128 images
val: ../coco128/images/train2017/  # 128 images
​
# number of classes
# 修改,原本是80,修改成3
nc: 3
# 修改二:class names即标注的类,数据集标注了3类,所以修改成3类,colo128是80类
# class names
names: [ 'closed_eye','closed_mouth','open_eye']

修改文件二:复制yolov5-5.0/models/yolov5s.yaml为pilao_yolov5s.yaml

注意不一定是yolov5s.yaml,这是训练时参考的模型,可以是其他的,自行了解

# parameters
# 修改,原本是80,修改成3
nc: 3  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

5、训练

python train.py --img 640 --batch 16 --epochs 300 --data ./data/pilao_coco128.yaml --cfg ./models/pilao_yolov5s.yaml

image.png

看到进度,已经在运行了,训练了大概3个多小时。

最后可以在runs/train/expX/weights目录下看到生成了两个pt文件

6、测试

python detect.py --source data/images/zidane.jpg --weights runs/train/exp2/weights/best.pt

路径自行修改。

相关文章
|
3月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
|
3月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
3月前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
8天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
40 1
|
12天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
13天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
57 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
8天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
34 4

热门文章

最新文章