AI计算机视觉笔记一:YOLOV5疲劳驾驶行为检测

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: 如何使用云服务器AutoDL进行深度学习模型的训练,特别是针对YOLOV5疲劳驾驶行为训练检测

若该文为原创文章,转载请注明原文出处。

一般情况下,大部分人的电脑都是没有cpu的,cpu也是可以训练的,但花费的时间太长,实际200张图片,使用CPU训练300轮花了3天,本章记录使用云服务器来训练自己的数据集。

使用的云服务器是AutoDL,一直在使用,性价比还是比较高的。

AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL

一、准备数据集

数据集可以自己拍照,也可以网上找,博主在网上找到了一份疲劳驾驶行为的图片,直接拿过来用了,共有2千多张。
image.png
准备好数据后需要数据标注,数据标注是大部分人工智能算法得以有效运行的关键环节。数据标注的过程是通过人工贴标的方式,为机器系统可供学习的样本。yolov5标注使用的是labelimg软件。

需要数据集,下方评论或@博主。标注数据是在本地电脑操作,标注后才把数据上传到云服务器训练

二、labelimg

1、激活环境

conda activate yolo

2、安装labelimg

使用pip 安装

pip install labelimg

安装后,在终端输入labelimg启动软件

image.png

3、标注

标记完成的数据请按照下面的格式进行放置,方便程序进行索引。
colo128
├─ images
│ ├─ test # 下面放测试集图片
│ ├─ train # 下面放训练集图片
│ └─ val # 下面放验证集图片
└─ labels
├─ test # 下面放测试集标签
├─ train # 下面放训练集标签
├─ val # 下面放验证集标签

3.1 打开图片及设置标注文件保存的目录并设置自动保存,这里需要主要选择yolo格式
image.png

3.2 开始标注,画框,标记目标的label,crtl+s保存,然后d切换到下一张继续标注,不断重复重复
image.png
标注完成后,把colo128打包压缩下,准备上传到服务器。

三、训练数据集

1、注册AutoDL

自行注册,云服务可以按时收费,也可以其他方式,自己选择。
image.png

2、创建实例

配置选择,选择的是3090,也可以其他,我比较喜欢就是直接选择好社区镜像,就给你创建好环境
image.png

创建后开启,可以通过多种方式登录,为了方便,直接使用JupyterLab
image.png

3、上传数据集和下载YOLOV5-5.0

删除环境自带的yolov5版本,然后下载yolov5-5.0版本,并上传到服务器,可以直接拖进去,并把标注好的数据也一并上传。
image.png

4、修改配置文件

博主是 基于colo128配置文件训练的,这里需要修改两个文件

修改文件一:复制yolov5-5.0/data/colo128.yaml为pilao_coco128.yaml

# 修改一:数据集路径
train: ../coco128/images/train2017/  # 128 images
val: ../coco128/images/train2017/  # 128 images
​
# number of classes
# 修改,原本是80,修改成3
nc: 3
# 修改二:class names即标注的类,数据集标注了3类,所以修改成3类,colo128是80类
# class names
names: [ 'closed_eye','closed_mouth','open_eye']

修改文件二:复制yolov5-5.0/models/yolov5s.yaml为pilao_yolov5s.yaml

注意不一定是yolov5s.yaml,这是训练时参考的模型,可以是其他的,自行了解

# parameters
# 修改,原本是80,修改成3
nc: 3  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

5、训练

python train.py --img 640 --batch 16 --epochs 300 --data ./data/pilao_coco128.yaml --cfg ./models/pilao_yolov5s.yaml

image.png

看到进度,已经在运行了,训练了大概3个多小时。

最后可以在runs/train/expX/weights目录下看到生成了两个pt文件

6、测试

python detect.py --source data/images/zidane.jpg --weights runs/train/exp2/weights/best.pt

路径自行修改。

相关文章
|
18天前
|
机器学习/深度学习 人工智能 JSON
微信小程序原生AI运动(动作)检测识别解决方案
近年来,疫情限制了人们的出行,却推动了“AI运动”概念的兴起。AI运动已在运动锻炼、体育教学、线上主题活动等多个场景中广泛应用,受到互联网用户的欢迎。通过AI技术,用户可以在家中进行有效锻炼,学校也能远程监督学生的体育活动,同时,云上健身活动形式多样,适合单位组织。该方案成本低、易于集成和扩展,已成功应用于微信小程序。
|
12天前
|
机器学习/深度学习 人工智能 算法框架/工具
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
28 0
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
|
2月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
2月前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
7天前
|
存储 人工智能 自然语言处理
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
|
1天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
17 6
|
1天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用与挑战
【10月更文挑战第21天】 本文探讨了人工智能(AI)在医疗领域的多种应用,包括疾病诊断、治疗方案推荐、药物研发和患者管理等。通过分析这些应用案例,我们可以看到AI技术如何提高医疗服务的效率和准确性。然而,AI在医疗领域的广泛应用也面临诸多挑战,如数据隐私保护、算法透明度和伦理问题。本文旨在为读者提供一个全面的视角,了解AI技术在医疗领域的潜力和面临的困难。
|
2天前
|
人工智能 自然语言处理 监控
AI技术在文本情感分析中的应用
【10月更文挑战第22天】本文将探讨人工智能(AI)如何改变我们对文本情感分析的理解和应用。我们将通过实际的代码示例,深入了解AI如何帮助我们识别和理解文本中的情感。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索AI的奇妙世界吧!
10 3
|
2天前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
13 2

热门文章

最新文章