基于深度学习的人群密度检测系统(UI界面+YOLOv5+训练数据集)

简介: 基于深度学习的人群密度检测系统(UI界面+YOLOv5+训练数据集)

前言


       近年来,随着公共交通的不断发展,选择轨道交通等方式出行的人数亦随之增多,拥挤环境下容易发生踩踏事件。另外娱乐活动日渐丰富,大规模人群聚集的情况也越来越普遍,也会存在冲撞踩踏等事件发生;而疫情期间,需禁止人员聚集,防止疫情传播。对于公共活动中人群密集程度的监测,目前人工识别视频监控的方式难以全天候值守,因此利用智能图像识别系统检测人群密度的方法也成为解决此类问题的方案。人群密度检测系统是依托智能 AI 技术而研发的软件,在可设置的区域面积内,对人员数量进行识别和统计,从而计算人群聚集密度。人群密度检测系统广泛用于人群密集场合,这里博主分享个人原创开发的人群密度检测系统小项目,供大家参考学习了。

       这里给出博主设计的软件界面,一贯的简约风哈哈,功能也可以满足图片、视频和摄像头的识别检测,初始界面如下图:



       检测人流密度时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个人,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       软件好不好用,颜值很重要,首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的人群密度进行识别,识别的结果可视化显示在界面和图像中,另外提供多个人的显示选择功能,演示效果如下。本系统界面上显示的所有文字、图标、图片均可自行修改,修改方式可见上面的视频介绍。

(一)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,右侧输入账号和密码。



(二)人群密度图片识别

       系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有行人检测计数的结果,可通过下拉选框查看单个的结果。本功能的界面展示如下图所示:



(三)人群密度视频识别效果展示

       很多时候我们需要识别一段视频中的人属性,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别人,并将结果记录在右下角表格中,效果如下图所示:



(四)摄像头检测效果展示

       在真实场景中,我们往往利用设备摄像头获取实时画面,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的人,识别结果展示如下图:




2. 人群密度检测系统


       传统的人群计数及密度检测的方法具有一定局限性,无法从图像中提取更抽象的有助于完成行人检测任务的语义特征,使得面对背景复杂、人群密集、遮挡严重的场景时,计数精度无法满足实际需求。近年来,深度学习技术发展迅猛,在许多计算机视觉任务中得到成功应用,促使研究人员开始探索基于卷积神经网络的人群计数办法.相比于传统方法,基于CNN的人群计数方法在处理场景适应性、尺度多样性等问题时表现更优。而且由于特征是自学习的,不需要人工选取,可以显著提升计数效果,因此已经成为当前人群计数领域的研究热点。


(一)YOLOv5的基本原理

       本文所使用的模型基于YoloV5算法,该方法在减少计算量和加快推理速度上较其他算法有了很大提升,主要技术包括以下几个方面。



       (1)Focus结构:Focus网络结构具体操作是在一张图片中每隔一个像素拿到一个值,这个时候获得了四个独立的特征层,然后将四个独立的特征层进行堆叠,此时宽高信息就集中到了通道信息,输入通道扩充了四倍。该结构在YoloV5第5版之前有所应用,最新版本中未使用。

python
class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))


        (2)数据增强:Mosaic数据增强、Mosaic利用了四张图片进行拼接实现数据中增强,根据论文所说其拥有一个巨大的优点是丰富检测物体的背景!且在BN计算的时候一下子会计算四张图片的数据!



        (3)多正样本匹配:在之前的Yolo系列里面,在训练时每一个真实框对应一个正样本,即在训练时,每一个真实框仅由一个先验框负责预测。YoloV5中为了加快模型的训练效率,增加了正样本的数量,在训练时,每一个真实框可以由多个先验框负责预测。

       (4)主干网络:YoloV5所使用的主干特征提取网络为CSPDarknet,它使用了残差网络Residual,CSPDarknet中的残差卷积可以分为两个部分,主干部分是一次1X1的卷积和一次3X3的卷积;残差边部分不做任何处理,直接将主干的输入与输出结合。代码如下:

python
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]


(二)行人检测数据集及训练过程

       这里我们使用的人群数据集来自于CUHK Occlusion Dataset,该数据集用于研究活动分析和拥挤场景, 包含1063 张有遮挡的行人图像,并提供有标记文件,所有标签已转换至YOLO适用的txt格式,部分截图如下图所示。



       每张图像均提供了图像类标记信息,图像中行人的bounding box,数据集并解压后得到如下的图片



       然后我们可以执行train.py程序进行训练。在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练人群识别的模型训练曲线图。



       一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值,

       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,其中预测方法(predict.py)部分的代码如下所示:

python
def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)
    return pred, InferNms


       得到预测结果我们便可以将帧图像中的行人框出,然后在图片上用opencv绘图操作,预定义当前视野区域的面积,然后根据预测出的目标个数计算当前画面中的行人密度。以下是读取行人图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
def plot_one_box(img, x, color=None, label=None, line_thickness=None):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
if __name__ == '__main__':
    img_path = "./UI_rec/test_/set00_set08-occ_81.jpg"
    image = cv_imread(img_path)
    img0 = image.copy()
    img = letterbox(img0, new_shape=imgsz)[0]
    img = np.stack(img, 0)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
    pred, useTime = predict(img)
    det = pred[0]
    p, s, im0 = None, '', img0
    if det is not None and len(det):  # 如果有检测信息则进入
        det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
        number_i = 0  # 类别预编号
        detInfo = []
        for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
            # 将检测信息添加到字典中
            detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
            number_i += 1  # 编号数+1
            label = '%s %.2f' % (names[int(cls)], conf)
            # 画出检测到的目标物
            plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
    # 实时显示检测画面
    cv2.imshow('Stream', image)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break
    c = cv2.waitKey(0) & 0xff


       执行得到的结果如下图所示,图中行人和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其封装成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统功能进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
86 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
7天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
130 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
7天前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
29 8
|
3天前
|
机器学习/深度学习 数据采集 算法
m基于Googlenet深度学习的运动项目识别系统matlab仿真,包括GUI界面
**摘要:** 在MATLAB 2022a中,基于GoogLeNet的运动识别系统展示优秀性能。GoogLeNet,又称Inception网络,通过结合不同尺寸卷积核的Inception模块实现深度和宽度扩展,有效识别复杂视觉模式。系统流程包括数据预处理、特征提取(前端层学习基础特征,深层学习运动模式)、池化、Dropout及全连接层分类。MATLAB程序示例展示了选择图像、预处理后进行分类的交互过程。当按下按钮,图像被读取、调整大小并输入网络,最终通过classify函数得到预测标签。
2 0
|
1天前
|
机器学习/深度学习 数据采集 自动驾驶
深度学习在图像识别中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为推动现代科技进步的核心力量之一。特别是在图像识别领域,深度学习模型通过模拟人脑处理视觉信息的方式,显著提高了识别的准确性和效率。本文将探讨深度学习在图像识别中的关键技术应用,分析面临的主要挑战,并展望未来发展趋势。
|
1天前
|
机器学习/深度学习 算法 自动驾驶
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的主要挑战。通过分析最新的科研数据和实验结果,本文揭示了深度学习模型如何超越传统算法,实现更高的准确性和效率。同时,文章也指出了当前深度学习在图像识别中存在的问题,如过拟合、数据偏差和计算资源需求等,并提出了可能的解决策略。最后,本文对未来深度学习技术的发展方向进行了展望。
|
23小时前
|
机器学习/深度学习 数据采集 边缘计算
探索深度学习在自然语言处理中的应用与挑战
【6月更文挑战第29天】 随着人工智能技术的飞速发展,深度学习已经成为推动自然语言处理(NLP)领域革新的核心动力。本文旨在深入探讨深度学习技术在NLP中的广泛应用及其面临的主要挑战。文章首先概述了深度学习在NLP领域的应用现状,包括语音识别、机器翻译、情感分析等方面。随后,详细讨论了在实现高效NLP系统过程中遇到的关键挑战,如数据集的偏见问题、模型的可解释性以及资源消耗等。最后,文章展望了未来深度学习技术在NLP领域的发展趋势和潜在解决方案。
|
1天前
|
机器学习/深度学习 数据采集 人工智能
深度学习在自然语言处理中的应用
【6月更文挑战第29天】探索神经网络、词嵌入、序列模型与注意力机制在文本理解、生成和交互中的应用。从数据预处理到模型优化,深度学习已广泛用于文本分类、情感分析、机器翻译等任务,未来趋势包括跨模态学习、知识图谱、可解释性和移动端部署。随着技术发展,NLP将迎来更多创新。
|
1天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为图像识别领域的重要工具。本文深入探讨了深度学习模型如何通过模拟人脑处理信息的方式实现对复杂图像的高效识别,并分析了当前面临的主要技术挑战。文中引用多项研究数据和实验结果,以科学严谨的态度揭示深度学习在图像识别中的实际应用价值及未来发展方向。
|
1天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为推动图像识别技术前进的核心动力。本文将深入探讨深度学习在图像识别领域的应用及其所面临的挑战。通过分析最新的研究数据和实验结果,本文旨在揭示深度学习模型如何提高图像处理的准确性和效率,并讨论当前技术发展的局限性和未来可能的改进方向。
8 1