基于深度学习的人群密度检测系统(UI界面+YOLOv5+训练数据集)

简介: 基于深度学习的人群密度检测系统(UI界面+YOLOv5+训练数据集)

前言


       近年来,随着公共交通的不断发展,选择轨道交通等方式出行的人数亦随之增多,拥挤环境下容易发生踩踏事件。另外娱乐活动日渐丰富,大规模人群聚集的情况也越来越普遍,也会存在冲撞踩踏等事件发生;而疫情期间,需禁止人员聚集,防止疫情传播。对于公共活动中人群密集程度的监测,目前人工识别视频监控的方式难以全天候值守,因此利用智能图像识别系统检测人群密度的方法也成为解决此类问题的方案。人群密度检测系统是依托智能 AI 技术而研发的软件,在可设置的区域面积内,对人员数量进行识别和统计,从而计算人群聚集密度。人群密度检测系统广泛用于人群密集场合,这里博主分享个人原创开发的人群密度检测系统小项目,供大家参考学习了。

       这里给出博主设计的软件界面,一贯的简约风哈哈,功能也可以满足图片、视频和摄像头的识别检测,初始界面如下图:



       检测人流密度时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个人,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       软件好不好用,颜值很重要,首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的人群密度进行识别,识别的结果可视化显示在界面和图像中,另外提供多个人的显示选择功能,演示效果如下。本系统界面上显示的所有文字、图标、图片均可自行修改,修改方式可见上面的视频介绍。

(一)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,右侧输入账号和密码。



(二)人群密度图片识别

       系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有行人检测计数的结果,可通过下拉选框查看单个的结果。本功能的界面展示如下图所示:



(三)人群密度视频识别效果展示

       很多时候我们需要识别一段视频中的人属性,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别人,并将结果记录在右下角表格中,效果如下图所示:



(四)摄像头检测效果展示

       在真实场景中,我们往往利用设备摄像头获取实时画面,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的人,识别结果展示如下图:




2. 人群密度检测系统


       传统的人群计数及密度检测的方法具有一定局限性,无法从图像中提取更抽象的有助于完成行人检测任务的语义特征,使得面对背景复杂、人群密集、遮挡严重的场景时,计数精度无法满足实际需求。近年来,深度学习技术发展迅猛,在许多计算机视觉任务中得到成功应用,促使研究人员开始探索基于卷积神经网络的人群计数办法.相比于传统方法,基于CNN的人群计数方法在处理场景适应性、尺度多样性等问题时表现更优。而且由于特征是自学习的,不需要人工选取,可以显著提升计数效果,因此已经成为当前人群计数领域的研究热点。


(一)YOLOv5的基本原理

       本文所使用的模型基于YoloV5算法,该方法在减少计算量和加快推理速度上较其他算法有了很大提升,主要技术包括以下几个方面。



       (1)Focus结构:Focus网络结构具体操作是在一张图片中每隔一个像素拿到一个值,这个时候获得了四个独立的特征层,然后将四个独立的特征层进行堆叠,此时宽高信息就集中到了通道信息,输入通道扩充了四倍。该结构在YoloV5第5版之前有所应用,最新版本中未使用。

python
class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))


        (2)数据增强:Mosaic数据增强、Mosaic利用了四张图片进行拼接实现数据中增强,根据论文所说其拥有一个巨大的优点是丰富检测物体的背景!且在BN计算的时候一下子会计算四张图片的数据!



        (3)多正样本匹配:在之前的Yolo系列里面,在训练时每一个真实框对应一个正样本,即在训练时,每一个真实框仅由一个先验框负责预测。YoloV5中为了加快模型的训练效率,增加了正样本的数量,在训练时,每一个真实框可以由多个先验框负责预测。

       (4)主干网络:YoloV5所使用的主干特征提取网络为CSPDarknet,它使用了残差网络Residual,CSPDarknet中的残差卷积可以分为两个部分,主干部分是一次1X1的卷积和一次3X3的卷积;残差边部分不做任何处理,直接将主干的输入与输出结合。代码如下:

python
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]


(二)行人检测数据集及训练过程

       这里我们使用的人群数据集来自于CUHK Occlusion Dataset,该数据集用于研究活动分析和拥挤场景, 包含1063 张有遮挡的行人图像,并提供有标记文件,所有标签已转换至YOLO适用的txt格式,部分截图如下图所示。



       每张图像均提供了图像类标记信息,图像中行人的bounding box,数据集并解压后得到如下的图片



       然后我们可以执行train.py程序进行训练。在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练人群识别的模型训练曲线图。



       一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值,

       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,其中预测方法(predict.py)部分的代码如下所示:

python
def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)
    return pred, InferNms


       得到预测结果我们便可以将帧图像中的行人框出,然后在图片上用opencv绘图操作,预定义当前视野区域的面积,然后根据预测出的目标个数计算当前画面中的行人密度。以下是读取行人图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
def plot_one_box(img, x, color=None, label=None, line_thickness=None):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
if __name__ == '__main__':
    img_path = "./UI_rec/test_/set00_set08-occ_81.jpg"
    image = cv_imread(img_path)
    img0 = image.copy()
    img = letterbox(img0, new_shape=imgsz)[0]
    img = np.stack(img, 0)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
    pred, useTime = predict(img)
    det = pred[0]
    p, s, im0 = None, '', img0
    if det is not None and len(det):  # 如果有检测信息则进入
        det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
        number_i = 0  # 类别预编号
        detInfo = []
        for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
            # 将检测信息添加到字典中
            detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
            number_i += 1  # 编号数+1
            label = '%s %.2f' % (names[int(cls)], conf)
            # 画出检测到的目标物
            plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
    # 实时显示检测画面
    cv2.imshow('Stream', image)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break
    c = cv2.waitKey(0) & 0xff


       执行得到的结果如下图所示,图中行人和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其封装成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统功能进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
3月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
110 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
基于opencv的车牌识别系统(UI界面采用tkinter设计)
基于opencv的车牌识别系统(UI界面采用tkinter设计)
39 0
|
4月前
|
搜索推荐 数据库
最新UI六零导航系统源码 | 多模版全开源
使用PHP+MySql,增加后台管理 多模板选择,支持在后台切换模板 增加常用搜索引擎,如:知乎、哔哩哔哩、在线翻译等(支持自定义) 支持用户提交收录申请,地址:http://域名/apply 部分模板优化和增加部分功能,如返回顶部、获取输入框焦点、时间日期显示等
76 1
|
4月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
70 4
|
4月前
|
开发者 图形学 前端开发
绝招放送:彻底解锁Unity UI系统奥秘,五大步骤教你如何缔造令人惊叹的沉浸式游戏体验,从Canvas到动画,一步一个脚印走向大师级UI设计
【8月更文挑战第31天】随着游戏开发技术的进步,UI成为提升游戏体验的关键。本文探讨如何利用Unity的UI系统创建美观且功能丰富的界面,包括Canvas、UI元素及Event System的使用,并通过具体示例代码展示按钮点击事件及淡入淡出动画的实现过程,助力开发者打造沉浸式的游戏体验。
105 0
|
15天前
|
搜索推荐 Android开发 开发者
探索安卓开发中的自定义视图:打造个性化UI组件
【10月更文挑战第39天】在安卓开发的世界中,自定义视图是实现独特界面设计的关键。本文将引导你理解自定义视图的概念、创建流程,以及如何通过它们增强应用的用户体验。我们将从基础出发,逐步深入,最终让你能够自信地设计和实现专属的UI组件。
|
2月前
|
开发框架 JavaScript 前端开发
鸿蒙NEXT开发声明式UI是咋回事?
【10月更文挑战第15天】鸿蒙NEXT的声明式UI基于ArkTS,提供高效简洁的开发体验。ArkTS扩展了TypeScript,支持声明式UI描述、自定义组件及状态管理。ArkUI框架则提供了丰富的组件、布局计算和动画能力。开发者仅需关注数据变化,UI将自动更新,简化了开发流程。此外,其前后端分层设计与编译时优化确保了高性能运行,利于生态发展。通过组件创建、状态管理和渲染控制等方式,开发者能快速构建高质量的鸿蒙应用。
122 3
|
1月前
|
开发框架 JavaScript 前端开发
HarmonyOS UI开发:掌握ArkUI(包括Java UI和JS UI)进行界面开发
【10月更文挑战第22天】随着科技发展,操作系统呈现多元化趋势。华为推出的HarmonyOS以其全场景、多设备特性备受关注。本文介绍HarmonyOS的UI开发框架ArkUI,探讨Java UI和JS UI两种开发方式。Java UI适合复杂界面开发,性能较高;JS UI适合快速开发简单界面,跨平台性好。掌握ArkUI可高效打造符合用户需求的界面。
91 8
|
2月前
|
JavaScript API 开发者
掌握ArkTS,打造HarmonyOS应用新视界:从“Hello World”到状态管理,揭秘鸿蒙UI开发的高效秘诀
【10月更文挑战第19天】ArkTS(ArkUI TypeScript)是华为鸿蒙系统中用于开发用户界面的声明式编程语言,结合了TypeScript和HarmonyOS的UI框架。本文介绍ArkTS的基本语法,包括组件结构、模板和脚本部分,并通过“Hello World”和计数器示例展示其使用方法。
64 1
|
2月前
|
缓存 测试技术 C#
使用Radzen Blazor组件库开发的基于ABP框架炫酷UI主题
【10月更文挑战第20天】本文介绍了使用 Radzen Blazor 组件库开发基于 ABP 框架的炫酷 UI 主题的步骤。从准备工作、引入组件库、设计主题、集成到 ABP 框架,再到优化和调试,详细讲解了每个环节的关键点和注意事项。通过这些步骤,你可以打造出高性能、高颜值的应用程序界面。