基于深度学习的瓶子检测软件(UI界面+YOLOv5+训练数据集)

简介: 基于深度学习的瓶子检测软件(UI界面+YOLOv5+训练数据集)

前言


       玻璃瓶、塑料瓶使用后可以回收再产,既有效解决废料垃圾的产生,同时也能够实现产品的循环利用。随着政府对环境友好型、资源节约型社会建设的不断深入,以及消费者本身环保节约意识的增强,玻璃包装逐渐成为政府鼓励类包装材料,消费者的认可程度也不断提升。各种玻璃瓶、塑料瓶的应用已然非常普遍,诸如:酒类、医包、日包等。

       为了提高塑料瓶、玻璃瓶的生产线定位检测、回收利用等环节的效率,在当今全自动化生产趋势下,需要配合机床、机器人等识别和定位瓶子位置,传统的人工目测显然不是一个好的解决方案。各企业急需一套全自动化的检测方案,来解决这个难以平衡的矛盾。

       本系统基于YOLOv5算法实现,采用登录注册进行用户管理,对于图片、视频和摄像头捕获的实时画面,可检测瓶子,系统支持结果记录、展示和保存,每次检测的结果记录在表格中。对此这里给出博主设计的界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:



       检测类别时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个类别,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的瓶子进行识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。

(一)系统介绍

       基于深度学习的瓶子检测软件主要用于日常塑料瓶、玻璃瓶等瓶子检测,利用深度学习技术检测识别瓶子数目,可视化检测结果;可对图片、视频、摄像设备得到的图像进行分析,自动标记和记录检测结果,辅助计算机进行瓶子生产回收等工序;深度学习模型可方便切换和更新,已针对不同场景进行模型调整;提供用户登录注册功能,方便用户管理和使用;检测结果易于查看、记录和保存。

(二)技术特点

        (1)检测算法采用YoloV5实现,模型可切换更新;

        (2)定位图片、视频或摄像头等图像中瓶子位置;

        (3)检测结果实时性强,便携展示、记录和保存;

        (4)支持用户登录、注册、管理、界面可视化等功能;

(三)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个动图,右侧输入账号、密码、验证码等等。



(四)选择图片识别

       系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个结果,以便具体判断某一特定目标。本功能的界面展示如下图所示:



(五)视频识别效果展示

       很多时候我们需要识别一段视频中的多个瓶子,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别多个瓶子,并将瓶子的分类和计数结果记录在右下角表格中,效果如下图所示:



(六)摄像头检测效果展示

       在真实场景中,我们往往利用摄像头获取实时画面,同时需要对瓶子进行识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的瓶子,识别结果展示如下图:



2. 检测原理与训练


(一)基于YoloV5的瓶子检测

       YOLOv5( You Only Look Once ) 是 由 UltralyticsLLC 公司于 2020 年 5 月份提出,其图像推理速度最快达 0.007 s,即每秒可处理 140 帧,满足视频图像实时检测需求,同时结构更为小巧,YOLOv5s 版本的权重数据文件为 YOLOv4的 1/9,大小为 27 MB。YOLOv5处理流程为:

        (1)先将输入图片缩放到固定大小 640×640,再假想地将图片切分为 7×7个网格;

        (2)对整张图像做卷积运算,每个小网格负责 2 个回归框的和置信度的预测,同时每个小网格还要预测出来 20 个类别,以及属于这些类别的条件概率。

        (3)使用非极大值抑制法,对输出结果—类别和位置进行筛选处理。

        YOLO 最大的特长是由于只看一次,所以速度极快,但是准确率跟当下最好的检测器相比有差距。对于出现在同一个网格里,距离很近的两个小目标,经常出现漏检等情况。



       Yolov5 按照网络深度大小和特征图宽度大小分为 Yolov5s、 Yolov5m、Yolov5l、Yolov5,本文采用了 yolov5s 作为使用模型。Yolov5 的结构分为 input,backbone,Neck, 预测层。

       (1)在输入端使用了 Mosaic 的数据增强方式,随机调用 4 张图片,随机大小和分布,进行堆叠,丰富了数据,增加了很多小目标,提升小物体的识别能力。可以同时计算 4 张图片,相当于增加了 Mini-batch 大小,减少了GPU 内存的消耗。Yolov5 首先也可以通过聚类设定anchor大小,然后还可以在训练过程中,在每次训练时,计算不同训练集中的ahchor值。然后在预测时使用了自适应图片大小的缩放模式,通过减少黑边,提高了预测速度。

       (2) 在 Backbone 上 的 主 要 是 采 用 了Focus 结构,CSPnet 结构。Focus 结构不存在与 YOLOv3和 v4 版本中,其关键步骤为切片操作,如下图 所示。例如将原始图像 416* 416* 3 接入 Focus 结构中,通过切片操作,变为 208* 208* 12 的特征图,接下来进行一次 32 个卷积核操作,变为 208* 208* 32 的特征图。



(二)数据集和训练

       这里我们使用的瓶子识别数据集,包含训练数据集1486张图片,验证集248张图片,验证集125张图片,共计1859张图片。数据集部分图像及其标注信息如下图所示:



       每张图像均提供了图像类标记信息,图像中瓶子的bounding box,瓶子的关键part信息,以及瓶子的属性信息,数据集并解压后得到如下的图片。



       在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练瓶子类识别的模型训练和曲线图。



       YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),下图为博主训练交通标志类识别的模型训练曲线图。



       一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。绘制出来可以得到如下图所示的曲线。



       以PR-curve为例,可以看到我们的模型在验证集上的均值平均准确率为0.945。


3. 瓶子检测识别


       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:

python
def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)
    return pred, InferNms


       得到预测结果我们便可以将帧图像中的瓶子框出,然后在图片上用opencv绘图操作,输出瓶子的类别及瓶子的预测分数。以下是读取一个瓶子图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
if __name__ == '__main__':
# video_path = 0
    video_path = "./UI_rec/test_/瓶子检测视频.mp4"
    # 初始化视频流
    vs = cv2.VideoCapture(video_path)
    (W, H) = (None, None)
    frameIndex = 0  # 视频帧数
    try:
        prop = cv2.CAP_PROP_FRAME_COUNT
        total = int(vs.get(prop))
        # print("[INFO] 视频总帧数:{}".format(total))
    # 若读取失败,报错退出
    except:
        print("[INFO] could not determine # of frames in video")
        print("[INFO] no approx. completion time can be provided")
        total = -1
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    ret, frame = vs.read()
    vw = frame.shape[1]
    vh = frame.shape[0]
    print("[INFO] 视频尺寸:{} * {}".format(vw, vh))
    output_video = cv2.VideoWriter("./results.avi", fourcc, 20.0, (vw, vh))  # 处理后的视频对象
    # 遍历视频帧进行检测
    while True:
        # 从视频文件中逐帧读取画面
        (grabbed, image) = vs.read()
        # 若grabbed为空,表示视频到达最后一帧,退出
        if not grabbed:
            print("[INFO] 运行结束...")
            output_video.release()
            vs.release()
            exit()
        # 获取画面长宽
        if W is None or H is None:
            (H, W) = image.shape[:2]
        image = cv2.resize(image, (850, 500))
        img0 = image.copy()
        img = letterbox(img0, new_shape=imgsz)[0]
        img = np.stack(img, 0)
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
        pred, useTime = predict(img)
        det = pred[0]
        p, s, im0 = None, '', img0
        if det is not None and len(det):  # 如果有检测信息则进入
            det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
            number_i = 0  # 类别预编号
            detInfo = []
            for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
                c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
                # 将检测信息添加到字典中
                detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
                number_i += 1  # 编号数+1
                label = '%s %.2f' % (names[int(cls)], conf)
                # 画出检测到的目标物
                plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
        # 实时显示检测画面
        cv2.imshow('Stream', image)
        image = cv2.resize(image, (vw, vh))
        output_video.write(image)  # 保存标记后的视频
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        # print("FPS:{}".format(int(0.6/(end-start))))
        frameIndex += 1


       执行得到的结果如下图所示,图中瓶子的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
14天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
58 3
|
13天前
|
机器学习/深度学习 PyTorch TensorFlow
使用Python实现智能食品质量检测的深度学习模型
使用Python实现智能食品质量检测的深度学习模型
57 1
|
19天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
33 7
|
27天前
|
机器学习/深度学习 自然语言处理 监控
深度学习之声音事件检测
基于深度学习的声音事件检测(Sound Event Detection, SED)是指从音频数据中检测并识别出特定的声音事件(如玻璃破碎、狗叫声、警报声等)。这种技术被广泛应用于智能家居、城市监控、医疗监护等领域,随着深度学习的进步,其性能和准确性得到了显著提升。
56 0
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
深度学习之地形分类与变化检测
基于深度学习的地形分类与变化检测是遥感领域的一个关键应用,利用深度学习技术从卫星、无人机等地球观测平台获取的遥感数据中自动分析地表特征,并识别地形的变化。这一技术被广泛应用于城市规划、环境监测、灾害预警、土地利用变化分析等领域。
91 0
|
3天前
|
搜索推荐 Android开发 开发者
探索安卓开发中的自定义视图:打造个性化UI组件
【10月更文挑战第39天】在安卓开发的世界中,自定义视图是实现独特界面设计的关键。本文将引导你理解自定义视图的概念、创建流程,以及如何通过它们增强应用的用户体验。我们将从基础出发,逐步深入,最终让你能够自信地设计和实现专属的UI组件。
|
1月前
|
开发框架 JavaScript 前端开发
鸿蒙NEXT开发声明式UI是咋回事?
【10月更文挑战第15天】鸿蒙NEXT的声明式UI基于ArkTS,提供高效简洁的开发体验。ArkTS扩展了TypeScript,支持声明式UI描述、自定义组件及状态管理。ArkUI框架则提供了丰富的组件、布局计算和动画能力。开发者仅需关注数据变化,UI将自动更新,简化了开发流程。此外,其前后端分层设计与编译时优化确保了高性能运行,利于生态发展。通过组件创建、状态管理和渲染控制等方式,开发者能快速构建高质量的鸿蒙应用。
109 3
|
20天前
|
开发框架 JavaScript 前端开发
HarmonyOS UI开发:掌握ArkUI(包括Java UI和JS UI)进行界面开发
【10月更文挑战第22天】随着科技发展,操作系统呈现多元化趋势。华为推出的HarmonyOS以其全场景、多设备特性备受关注。本文介绍HarmonyOS的UI开发框架ArkUI,探讨Java UI和JS UI两种开发方式。Java UI适合复杂界面开发,性能较高;JS UI适合快速开发简单界面,跨平台性好。掌握ArkUI可高效打造符合用户需求的界面。
71 8
|
23天前
|
JavaScript API 开发者
掌握ArkTS,打造HarmonyOS应用新视界:从“Hello World”到状态管理,揭秘鸿蒙UI开发的高效秘诀
【10月更文挑战第19天】ArkTS(ArkUI TypeScript)是华为鸿蒙系统中用于开发用户界面的声明式编程语言,结合了TypeScript和HarmonyOS的UI框架。本文介绍ArkTS的基本语法,包括组件结构、模板和脚本部分,并通过“Hello World”和计数器示例展示其使用方法。
50 1
|
30天前
|
缓存 测试技术 C#
使用Radzen Blazor组件库开发的基于ABP框架炫酷UI主题
【10月更文挑战第20天】本文介绍了使用 Radzen Blazor 组件库开发基于 ABP 框架的炫酷 UI 主题的步骤。从准备工作、引入组件库、设计主题、集成到 ABP 框架,再到优化和调试,详细讲解了每个环节的关键点和注意事项。通过这些步骤,你可以打造出高性能、高颜值的应用程序界面。