基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面

简介: 本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法涉及理论知识概要
基于GoogLeNet深度学习网络的人员行为视频检测系统是一个高度复杂的计算机视觉应用,它利用深度神经网络的强大功能来识别和分类视频中的人员行为。GoogLeNet,也称为Inception网络,是由Google的研究团队提出的一种高效的卷积神经网络架构,因其创新的Inception模块而闻名,这一模块通过组合不同大小的卷积核来减少模型的参数数量,同时保持强大的特征提取能力。

376aaad4ef12bce23f5de8b795539903_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  基于GoogLeNet的人员行为视频检测系统通过深度学习方法,实现了对复杂行为模式的自动识别,是智能监控、公共安全、人机交互等领域的重要技术突破。尽管面临数据处理量大、计算资源要求高和行为多样性等挑战,但随着算法的不断优化和计算硬件的进步,这些系统的性能正在不断提升,其应用范围也在不断扩大。

3.MATLAB核心程序

cnt = 0; 
flag=[];
while hasFrame(v)%开始帧循环
    set(handles.edit2,'string','识别中.....');
    cnt = cnt+1;  
    axes(handles.axes1);
    im              = readFrame(v);
    [rr,cc,kk]      = size(im);

    II(:,:,1) = imresize(im(:,:,1),[224,224]);
    II(:,:,2) = imresize(im(:,:,2),[224,224]);
    II(:,:,3) = imresize(im(:,:,3),[224,224]);

    if mod(cnt,10)==1
    [Predicted_Label, Probability] = classify(net, II);
    [Vs,Is] = max(Probability);
    Is
    flag=[flag,Is];
    imshow(II)
    else
    imshow(II)
    end

%     set(handles.edit2,'string',Predicted_Label);
    pause(0.05);
end

xx = mode(flag)  
if xx==1
   set(handles.edit2,'string','乐队');
end
if xx==2
   set(handles.edit2,'string','乒乓球');
end
if xx==3
   set(handles.edit2,'string','刷牙');
end
if xx==4
   set(handles.edit2,'string','婴儿爬行');
end
if xx==5
   set(handles.edit2,'string','打鼓');
end
if xx==6
   set(handles.edit2,'string','拳击');
end
if xx==7
   set(handles.edit2,'string','标枪投掷');
end
if xx==8
   set(handles.edit2,'string','涂抹眼妆');
end
if xx==9
   set(handles.edit2,'string','篮球');
end
0Y_029m
相关文章
|
12天前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
14天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
1月前
|
机器学习/深度学习 数据可视化 Ubuntu
MATLAB - Gazebo 联合仿真 —— 使用 UR10 机械臂检测和采摘水果
MATLAB - Gazebo 联合仿真 —— 使用 UR10 机械臂检测和采摘水果
76 2
|
1月前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
1月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
1月前
|
存储 Serverless
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
|
1月前
|
机器学习/深度学习 编解码 Android开发
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
36 0
|
1月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
106 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
1月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
79 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章