基于 Bowyer-Watson算法实现delaunay德劳内三角网络和Voronoi泰森多边形的建立附matlab代码

简介: 基于 Bowyer-Watson算法实现delaunay德劳内三角网络和Voronoi泰森多边形的建立附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

不规则三角网(Triangulated Irregular Network,TIN)在表示地形的形态方面具有较好的表现,其生成算法一直备受关注。讨论了三角网的数据结构的设计,采用逐点插入算法中的Bowyer-Watson算法思想为研究重点,设计并实现了该算法,对算法实验过程中可能出现的交叉现象进行分析,给出算法的改进。该改进算法已用于地形的可视化建模中,获得了较好的效果,对于三角剖分的相关研究具有一定的价值。

⛄ 代码

clc

clear

close all

%% Bowyer-Watson算法复现(逐点插入)

Pts = rand(20,2);

% save Pts.mat Pts

% load Pts.mat Pts

Pts0 = Pts;

% figure,plot(Pts(:,1),Pts(:,2),'b.')

%% 建立最小外接矩形

MBR = [min(Pts(:,1))-0.5,max(Pts(:,2))+0.5;...

   min(Pts(:,1))-0.5,min(Pts(:,2))-0.5;...

   max(Pts(:,1))+0.5,max(Pts(:,2))+0.5;...

   max(Pts(:,1))+0.5,min(Pts(:,2))-0.5];

Pts = [MBR;Pts];%在点集中添加MBR;

Del = [1,2,3;2,3,4];%建立辅助窗口

%% 逐点插入

for i = 5:size(Pts,1)

   flag = zeros(1,size(Del,1));%点的影响范围flag

   for j = 1:size(Del,1)

       if influence(i,Pts,Del(j,:))==true %判断点是否在三角形外接圆内

           flag(j)=1;

       end

   end

   flag = flag>0;

   a = Del(flag,:);

   Del = Del(~flag,:);

   a = a(:);

   convex = unique(a);% Delaunay腔

   % 按角度顺次连接凸包顶点,生成新三角形

   Del_new = newtriangle(convex,i,Pts);

   % 局部最优化

   for j = 2:size(Del_new,1)

       tri1 = Del_new(j-1,:);

       tri2 = Del_new(j,:);

       [~,center] = influence(i,Pts,tri1);

       pt = Pts(setdiff(tri2,tri1),:);

       pt1 = Pts(tri1(1),:);

       if norm(pt-center)<norm(pt1-center)

           ipt = intersect(tri1,tri2);

           Del_new(j-1,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),setdiff(ipt,i)];

           Del_new(j,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),i];

       end

   end

   tri1 = Del_new(end,:);

   tri2 = Del_new(1,:);

   ipt = intersect(tri1,tri2);

   if length(ipt)>1

       [~,center] = influence(i,Pts,tri1);

       pt = Pts(setdiff(tri2,tri1),:);

       pt1 = Pts(tri1(1),:);

       if norm(pt-center)<norm(pt1-center)

           Del_new(end,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),setdiff(ipt,i)];

           Del_new(1,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),i];

       end

   end

   

   

   Del = [Del;Del_new];

%     x = [Pts(Del(:,1),1),Pts(Del(:,2),1),Pts(Del(:,3),1),Pts(Del(:,1),1)];

%     y = [Pts(Del(:,1),2),Pts(Del(:,2),2),Pts(Del(:,3),2),Pts(Del(:,1),2)];

%     figure;

%     for ii = 1:size(x,1)

%         plot(x(ii,:),y(ii,:),'b-')

%         hold on

%     end

%     plot(Pts(:,1),Pts(:,2),'bo')

end

%% 删除辅助点

Del0 = Del;

Del(Del(:,1)<5,:)=[];

Del(Del(:,2)<5,:)=[];

Del(Del(:,3)<5,:)=[];

%% 绘制结果三角形

x = [Pts(Del(:,1),1),Pts(Del(:,2),1),Pts(Del(:,3),1),Pts(Del(:,1),1)];

y = [Pts(Del(:,1),2),Pts(Del(:,2),2),Pts(Del(:,3),2),Pts(Del(:,1),2)];

figure;

for i = 1:size(x,1)

   plot(x(i,:),y(i,:),'b-')

   hold on

end

plot(Pts0(:,1),Pts0(:,2),'bo')

title('三角化')


Pts1 = Pts(5:end,:);

tri = delaunay(Pts1(:,1),Pts1(:,2));

figure,triplot(tri,Pts1(:,1),Pts1(:,2));

title('与matlab内建delaunay函数结果做对比')


%% Voronoi图

Del = Del0;% 重新把MBR加上

center = zeros(size(Del,1),2);

Voronoi = [];

Voronoi2 = [];

for i = 1:size(Del,1)

   Del1 = Del(i,:);

   [~,center0] = influence(1,Pts,Del1);

   center(i,:) = center0;

end

for i = 1:size(Del,1)

   Del1 = Del(i,:);

   for j = 1:size(Del,1)

       if i==j

           continue

       end

       Del2 = Del(j,:);

       ipt = intersect(Del1,Del2);

       if length(ipt)>1

           Voronoi = [Voronoi;i,j];

       end

   end

end

% for i = 1:size(Del,1)

%     Del1 = Del(i,[1,2]);

%     flag = false;

%     for j = 1:size(Del,1)

%         if i==j

%             continue

%         end

%         Del2 = Del(j,:);

%         ipt = intersect(Del1,Del2);

%         if length(ipt)>1

%             Voronoi = [Voronoi;i,j];

%             flag = true;

%         end

%     end

%     if ~flag

%         Voronoi2 = [Voronoi2;Del(i,[1,2,3])];

%     end

%     Del1 = Del(i,[2,3]);

%     flag = false;

%     for j = 1:size(Del,1)

%         if i==j

%             continue

%         end

%         Del2 = Del(j,:);

%         ipt = intersect(Del1,Del2);

%         if length(ipt)>1

%             Voronoi = [Voronoi;i,j];

%             flag = true;

%         end

%     end

%     if ~flag

%         Voronoi2 = [Voronoi2;Del(i,[2,3,1])];

%     end

%     Del1 = Del(i,[1,3]);

%     flag = false;

%     for j = 1:size(Del,1)

%         if i==j

%             continue

%         end

%         Del2 = Del(j,:);

%         ipt = intersect(Del1,Del2);

%         if length(ipt)>1

%             Voronoi = [Voronoi;i,j];

%             flag = true;

%         end

%     end

%     if ~flag

%         Voronoi2 = [Voronoi2;Del(i,[1,3,2])];

%     end

%

% end

% pt1 = Pts(Voronoi2(:,1),:);

% pt2 = Pts(Voronoi2(:,2),:);

% pt0 = (pt1+pt2)/2;

% pt3 = Pts(Voronoi2(:,3),:);

% vot = pt1-pt2;

% vot = vot./sqrt(sum(vot.^2,2));

% vot = [-vot(:,2),vot(:,1)];

% vot0 = pt0-pt3;

% if sum(vot.*vot0)<0

%     vot = -vot;

% end

% pt1 = pt0+vot;%为凸包画垂线

% Voronoi2 = [pt1,pt0];

figure;


for i = 1:size(Voronoi,1)

   plot([center(Voronoi(i,1),1),center(Voronoi(i,2),1)],...

       [center(Voronoi(i,1),2),center(Voronoi(i,2),2)],'b-');

   hold on

end

plot(Pts0(:,1),Pts0(:,2),'bo')

% for i = 1:size(pt1,1)

%     plot([pt1(i,1),pt0(i,1)],[pt1(i,2),pt2(i,2)],'b-')

%     hold on

% end

axis([min(Pts0(:,1)),max(Pts0(:,1)),min(Pts0(:,2)),max(Pts0(:,2))]);

axis equal

title('泰森多边形')


%% 判断插入点是否在一个三角形的外接圆内

function [flag,center] = influence(i,Pts,Del)

Del = Pts(Del,:);

pt = Pts(i,:);

pt1 = Del(1,:);

pt2 = Del(2,:);

pt3 = Del(3,:);

% [a1,b1;a2,b2]*[x;y]=[c1;c2] 外心计算公式

a1 = 2*(pt2(1)-pt1(1));

b1 = 2*(pt2(2)-pt1(2));

c1 = pt2(1).^2+pt2(2).^2-pt1(1).^2-pt1(2).^2;

a2 = 2*(pt3(1)-pt2(1));

b2 = 2*(pt3(2)-pt2(2));

c2 = pt3(1).^2+pt3(2).^2-pt2(1).^2-pt2(2).^2;

center = [a1,b1;a2,b2]\[c1;c2];

center = transpose(center);

% x = (c1*b2-c2*b1)/(a1*b2-a2*b1);

% y = (a1*c2-a2*c1)/(a1*b2-a2*b1);

% center = [x,y];

flag = norm(pt-center)<norm(pt1-center);

end

%% 按角度排排坐,分果果

function Del_new = newtriangle(convex,i,Pts)

pt = Pts(i,:);

convex0 = convex;

convex = Pts(convex,:)-repmat(pt,length(convex0),1);

convex = convex./repmat(sqrt(sum(convex.^2,2)),1,2);

theta = acos(convex(:,2));

theta(convex(:,1)<0)=2*pi-theta(convex(:,1)<0);

[~,I]=sort(theta);

Del_new = zeros(0,3);

for j = 2:length(I)

   Del_new = [Del_new;i,convex0(I(j-1)),convex0(I(j))];

end

Del_new = [Del_new;i,convex0(I(1)),convex0(I(end))];

end

 

⛄ 运行结果

⛄ 参考文献

[1]  Chrisochoides N ,  Sukup F . Task parallel implementation of the Bowyer-Watson algorithm[J]. mississippi state univ mississippi state ms, 1999.

[2] 成俊燕. 基于单张图片的服装建模相关算法研究[D]. 浙江大学.

[3] 李景焕. 基于Bowyer-Watson法的Delaunay三角网格的一些改进[J]. 天津商学院学报, 2007, 27(3):33-37.

[4] 周雪梅, 黎应飞. 基于Bowyer-Watson三角网生成算法的研究[J]. 计算机工程与应用, 2013, 49(6):198-200.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章