基于 Bowyer-Watson算法实现delaunay德劳内三角网络和Voronoi泰森多边形的建立附matlab代码

简介: 基于 Bowyer-Watson算法实现delaunay德劳内三角网络和Voronoi泰森多边形的建立附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

不规则三角网(Triangulated Irregular Network,TIN)在表示地形的形态方面具有较好的表现,其生成算法一直备受关注。讨论了三角网的数据结构的设计,采用逐点插入算法中的Bowyer-Watson算法思想为研究重点,设计并实现了该算法,对算法实验过程中可能出现的交叉现象进行分析,给出算法的改进。该改进算法已用于地形的可视化建模中,获得了较好的效果,对于三角剖分的相关研究具有一定的价值。

⛄ 代码

clc

clear

close all

%% Bowyer-Watson算法复现(逐点插入)

Pts = rand(20,2);

% save Pts.mat Pts

% load Pts.mat Pts

Pts0 = Pts;

% figure,plot(Pts(:,1),Pts(:,2),'b.')

%% 建立最小外接矩形

MBR = [min(Pts(:,1))-0.5,max(Pts(:,2))+0.5;...

   min(Pts(:,1))-0.5,min(Pts(:,2))-0.5;...

   max(Pts(:,1))+0.5,max(Pts(:,2))+0.5;...

   max(Pts(:,1))+0.5,min(Pts(:,2))-0.5];

Pts = [MBR;Pts];%在点集中添加MBR;

Del = [1,2,3;2,3,4];%建立辅助窗口

%% 逐点插入

for i = 5:size(Pts,1)

   flag = zeros(1,size(Del,1));%点的影响范围flag

   for j = 1:size(Del,1)

       if influence(i,Pts,Del(j,:))==true %判断点是否在三角形外接圆内

           flag(j)=1;

       end

   end

   flag = flag>0;

   a = Del(flag,:);

   Del = Del(~flag,:);

   a = a(:);

   convex = unique(a);% Delaunay腔

   % 按角度顺次连接凸包顶点,生成新三角形

   Del_new = newtriangle(convex,i,Pts);

   % 局部最优化

   for j = 2:size(Del_new,1)

       tri1 = Del_new(j-1,:);

       tri2 = Del_new(j,:);

       [~,center] = influence(i,Pts,tri1);

       pt = Pts(setdiff(tri2,tri1),:);

       pt1 = Pts(tri1(1),:);

       if norm(pt-center)<norm(pt1-center)

           ipt = intersect(tri1,tri2);

           Del_new(j-1,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),setdiff(ipt,i)];

           Del_new(j,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),i];

       end

   end

   tri1 = Del_new(end,:);

   tri2 = Del_new(1,:);

   ipt = intersect(tri1,tri2);

   if length(ipt)>1

       [~,center] = influence(i,Pts,tri1);

       pt = Pts(setdiff(tri2,tri1),:);

       pt1 = Pts(tri1(1),:);

       if norm(pt-center)<norm(pt1-center)

           Del_new(end,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),setdiff(ipt,i)];

           Del_new(1,:) = [setdiff(tri2,tri1),setdiff(tri1,tri2),i];

       end

   end

   

   

   Del = [Del;Del_new];

%     x = [Pts(Del(:,1),1),Pts(Del(:,2),1),Pts(Del(:,3),1),Pts(Del(:,1),1)];

%     y = [Pts(Del(:,1),2),Pts(Del(:,2),2),Pts(Del(:,3),2),Pts(Del(:,1),2)];

%     figure;

%     for ii = 1:size(x,1)

%         plot(x(ii,:),y(ii,:),'b-')

%         hold on

%     end

%     plot(Pts(:,1),Pts(:,2),'bo')

end

%% 删除辅助点

Del0 = Del;

Del(Del(:,1)<5,:)=[];

Del(Del(:,2)<5,:)=[];

Del(Del(:,3)<5,:)=[];

%% 绘制结果三角形

x = [Pts(Del(:,1),1),Pts(Del(:,2),1),Pts(Del(:,3),1),Pts(Del(:,1),1)];

y = [Pts(Del(:,1),2),Pts(Del(:,2),2),Pts(Del(:,3),2),Pts(Del(:,1),2)];

figure;

for i = 1:size(x,1)

   plot(x(i,:),y(i,:),'b-')

   hold on

end

plot(Pts0(:,1),Pts0(:,2),'bo')

title('三角化')


Pts1 = Pts(5:end,:);

tri = delaunay(Pts1(:,1),Pts1(:,2));

figure,triplot(tri,Pts1(:,1),Pts1(:,2));

title('与matlab内建delaunay函数结果做对比')


%% Voronoi图

Del = Del0;% 重新把MBR加上

center = zeros(size(Del,1),2);

Voronoi = [];

Voronoi2 = [];

for i = 1:size(Del,1)

   Del1 = Del(i,:);

   [~,center0] = influence(1,Pts,Del1);

   center(i,:) = center0;

end

for i = 1:size(Del,1)

   Del1 = Del(i,:);

   for j = 1:size(Del,1)

       if i==j

           continue

       end

       Del2 = Del(j,:);

       ipt = intersect(Del1,Del2);

       if length(ipt)>1

           Voronoi = [Voronoi;i,j];

       end

   end

end

% for i = 1:size(Del,1)

%     Del1 = Del(i,[1,2]);

%     flag = false;

%     for j = 1:size(Del,1)

%         if i==j

%             continue

%         end

%         Del2 = Del(j,:);

%         ipt = intersect(Del1,Del2);

%         if length(ipt)>1

%             Voronoi = [Voronoi;i,j];

%             flag = true;

%         end

%     end

%     if ~flag

%         Voronoi2 = [Voronoi2;Del(i,[1,2,3])];

%     end

%     Del1 = Del(i,[2,3]);

%     flag = false;

%     for j = 1:size(Del,1)

%         if i==j

%             continue

%         end

%         Del2 = Del(j,:);

%         ipt = intersect(Del1,Del2);

%         if length(ipt)>1

%             Voronoi = [Voronoi;i,j];

%             flag = true;

%         end

%     end

%     if ~flag

%         Voronoi2 = [Voronoi2;Del(i,[2,3,1])];

%     end

%     Del1 = Del(i,[1,3]);

%     flag = false;

%     for j = 1:size(Del,1)

%         if i==j

%             continue

%         end

%         Del2 = Del(j,:);

%         ipt = intersect(Del1,Del2);

%         if length(ipt)>1

%             Voronoi = [Voronoi;i,j];

%             flag = true;

%         end

%     end

%     if ~flag

%         Voronoi2 = [Voronoi2;Del(i,[1,3,2])];

%     end

%

% end

% pt1 = Pts(Voronoi2(:,1),:);

% pt2 = Pts(Voronoi2(:,2),:);

% pt0 = (pt1+pt2)/2;

% pt3 = Pts(Voronoi2(:,3),:);

% vot = pt1-pt2;

% vot = vot./sqrt(sum(vot.^2,2));

% vot = [-vot(:,2),vot(:,1)];

% vot0 = pt0-pt3;

% if sum(vot.*vot0)<0

%     vot = -vot;

% end

% pt1 = pt0+vot;%为凸包画垂线

% Voronoi2 = [pt1,pt0];

figure;


for i = 1:size(Voronoi,1)

   plot([center(Voronoi(i,1),1),center(Voronoi(i,2),1)],...

       [center(Voronoi(i,1),2),center(Voronoi(i,2),2)],'b-');

   hold on

end

plot(Pts0(:,1),Pts0(:,2),'bo')

% for i = 1:size(pt1,1)

%     plot([pt1(i,1),pt0(i,1)],[pt1(i,2),pt2(i,2)],'b-')

%     hold on

% end

axis([min(Pts0(:,1)),max(Pts0(:,1)),min(Pts0(:,2)),max(Pts0(:,2))]);

axis equal

title('泰森多边形')


%% 判断插入点是否在一个三角形的外接圆内

function [flag,center] = influence(i,Pts,Del)

Del = Pts(Del,:);

pt = Pts(i,:);

pt1 = Del(1,:);

pt2 = Del(2,:);

pt3 = Del(3,:);

% [a1,b1;a2,b2]*[x;y]=[c1;c2] 外心计算公式

a1 = 2*(pt2(1)-pt1(1));

b1 = 2*(pt2(2)-pt1(2));

c1 = pt2(1).^2+pt2(2).^2-pt1(1).^2-pt1(2).^2;

a2 = 2*(pt3(1)-pt2(1));

b2 = 2*(pt3(2)-pt2(2));

c2 = pt3(1).^2+pt3(2).^2-pt2(1).^2-pt2(2).^2;

center = [a1,b1;a2,b2]\[c1;c2];

center = transpose(center);

% x = (c1*b2-c2*b1)/(a1*b2-a2*b1);

% y = (a1*c2-a2*c1)/(a1*b2-a2*b1);

% center = [x,y];

flag = norm(pt-center)<norm(pt1-center);

end

%% 按角度排排坐,分果果

function Del_new = newtriangle(convex,i,Pts)

pt = Pts(i,:);

convex0 = convex;

convex = Pts(convex,:)-repmat(pt,length(convex0),1);

convex = convex./repmat(sqrt(sum(convex.^2,2)),1,2);

theta = acos(convex(:,2));

theta(convex(:,1)<0)=2*pi-theta(convex(:,1)<0);

[~,I]=sort(theta);

Del_new = zeros(0,3);

for j = 2:length(I)

   Del_new = [Del_new;i,convex0(I(j-1)),convex0(I(j))];

end

Del_new = [Del_new;i,convex0(I(1)),convex0(I(end))];

end

 

⛄ 运行结果

⛄ 参考文献

[1]  Chrisochoides N ,  Sukup F . Task parallel implementation of the Bowyer-Watson algorithm[J]. mississippi state univ mississippi state ms, 1999.

[2] 成俊燕. 基于单张图片的服装建模相关算法研究[D]. 浙江大学.

[3] 李景焕. 基于Bowyer-Watson法的Delaunay三角网格的一些改进[J]. 天津商学院学报, 2007, 27(3):33-37.

[4] 周雪梅, 黎应飞. 基于Bowyer-Watson三角网生成算法的研究[J]. 计算机工程与应用, 2013, 49(6):198-200.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
177 65
|
2天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
2天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
3天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
4天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
4天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
19天前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
40 2
|
19天前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
21天前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
36 2
|
24天前
|
机器学习/深度学习 算法 定位技术
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
30 3

热门文章

最新文章

下一篇
DDNS