m基于多核学习支持向量机MKLSVM的数据预测分类算法matlab仿真

简介: m基于多核学习支持向量机MKLSVM的数据预测分类算法matlab仿真

1.算法描述

    20世纪60年代Vapnik等人提出了统计学习理论。基于该理论,于90年代给出了一种新的学习方法——支持向量机。该方法显著优点为根据结构风险最小化归纳准则,有效地避免了过学习、维数灾难和局部极小等传统机器学习中存在的弊端,且在小样本情况下仍然具有良好的泛化能力,从而该算法受到了广泛的关注。但是,随着支持向量机的不断发展和应用,其也逐渐显现出一些局限。其一,支持向量机对孤立点和噪音数据是非常敏感的。为了解决此问题,Lin等人提出了模糊支持向量机的概念,即将样例的模糊隶属度引入到支持向量机中。模糊支持向量机在一定程度上降低了噪声点和孤立点对最终决策函数的影响,提高了支持向量机的抗噪音能力。其二,核函数与核参数的选择,对学习性能有至关重要的影响,然而目前还没有关于核函数以及核参数选取的有效手段。近年来多核学习已成为机器学习领域广大学者的研究热点。即用多个核相结合来代替单个核函数。

   核方法是解决非线性模式识别的一种有效方法,它用核函数k(xi,xj)来度量样本xi和xj之间的相似性,并通过一个非线性映射将输入数据映射到高维特征空间H,然后在H中寻找线性决策边界。但传统的核方法是基于单个特征空间映射的单核学习方法,多核学习相对于传统的单核学习,有更强的可解释性和可扩展性,在解决一些实际问题时往往能够取得比单核方法更好的泛化性能。通常考虑多个基本核函数的线性凸组合是一种简单有效的多核学习方法,在该框架下,样本在特征空间中的表示问题转化为基本核与组合系数的选择问题。

   MKLSVM的核心是SVM,其大概原理如下。

bd5cf67220173ebab1eabeb8b293f80f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
dac510a13cca0f8c8ba9595f21393847_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
39b020866da5a05e210bb1fba96506b9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

线性可分SVM分类器可以通过如下表达式来表示:

c4f58a48cf19b168e9f9c28ccb5c5249_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

根据公式1可知,那么SVM支持向量机的分类超平面可以表示为如下公式:

cfbdcbabf8ba4ba63f92ec591516009b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

然后通过公式2进行求解,可以得到SVM支持向量机的参数参数w和b的最优解:

c2f0cba13ada6d295a993a1d49913049_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
876ca17fa4664688284b7df1534478ed_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
900324c3b7b3e91d5c620c75a0be362c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在实际情况中,多数的数据属于非线性数据,那么采用上述的线性可分SVM支持向量机则无法实现数据分类,因此需要建立一个非线性的SVM支持向量机来实现数据分类。非线性可分SVM,其通过将样本数据映射到高纬度的特征空间,然后进行内积计算,得到最优分类平面。但是高纬度的特征数据内积计算降带来巨大的运算量。针对这个情况,一般采用的是一种满足Mercer 条件的核函数来实现这种内积计算,其数学公式为: 

221530258719a24f2ee75926e9e4063c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

因此,从而映射到高维空间后得到的最优分类函数如下所示:

dde51470c572ab97751fe0288f259002_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.仿真效果预览
matlab2022a仿真结果如下:

11.png
12.png
13.png
14.png

3.MATLAB核心程序

ratio=0.5;         %产生训练数据的比例,即50%训练,50%测试,
data='ionosphere' ;%选择数据类型
C = [100];%分类模型参数
verbose=1;           % 显示训练信息
 
options.algo='svmclass'; % Choice of algorithm in mklsvm can be either选择分类算法类型
                         % 'svmclass' or 'svmreg'
options.stopvariation=0; % use variation of weights for stopping criterion 使用权值变化作为停止准则
options.stopKKT=1;       % set to 1 if you use KKTcondition for stopping criterion    如果使用KKTcondition作为停止条件,则设置为1
options.stopdualitygap=0; % set to 1 for using duality gap for stopping criterion设为1表示使用对偶间隙作为停止准则
 
    options.seuildiffsigma=1e-2;        % stopping criterion for weight variation 重量变化停止准则
    options.seuildiffconstraint=0.1;    % stopping criterion for KKTKKT的停止准则
    options.seuildualitygap=0.01;       % stopping criterion for duality gap对偶间隙的停止准则
 
    options.goldensearch_deltmax=1e-1; % initial precision of golden section search黄金分割搜索的初始精度
    options.numericalprecision=1e-8;   % numerical precision weights below this value数值精度权重低于此值
                                       % are set to zero 
    options.lambdareg = 1e-8;          % ridge added to kernel matrix 核矩阵上的岭
 
    options.firstbasevariable='first'; % tie breaking method for choosing the base 断线法选基
                                       % variable in the reduced gradient method 
    options.nbitermax=500;             % maximal number of iteration  最大迭代次数
    options.seuil=0;                   % forcing to zero weights lower than this 迫使重量小于零
    options.seuilitermax=10;           % value, for iterations lower than this one 对于低于此值的迭代
 
    options.miniter=0;                 % minimal number of iterations最小迭代次数 
    options.verbosesvm=0;              % verbosity of inner svm algorithm 内支持向量机算法的冗余度
 
 
    options.efficientkernel=0;         % use efficient storage of kernels 
 
kernelt={'gaussian' 'gaussian' 'poly' 'poly' };%SVM内核参数,这个地方你需要结合SVM理论,他有一个核函数的概念呢,这里是高斯核函数
kerneloptionvect={[0.5 1 2 5 7 10 12 15 17 20] [0.5 1 2 5 7 10 12 15 17 20] [1 2 3] [1 2 3]};
variablevec={'all' 'single' 'all' 'single'};
 
 
classcode=[1 -1];%分类识别码,即1和-1两种类型
load([data ]);%用laod函数加载数据
[nbdata,dim]=size(x);%数据的长度和深度
 
nbtrain=floor(nbdata*ratio);%根据ratio变量得到训练参数
rand('state',0);%随机化因子0,以0位随机随机状态开始训练。
 
for i=1: nbiter
    i
    %这个地方产生训练数据和测试数据,具体见CreateDataAppTest内部函数的注释
    %输入原始的数据x和y,训练比例,分类编码,输出训练xy,测试xy
    [xapp,yapp,xtest,ytest,indice]=CreateDataAppTest(x, y, nbtrain,classcode);
    % [xapp,xtest]=normalizemeanstd(xapp,xtest);
    %这个是产生SVM核,具体见CreateKernelListWithVariable子函数注释
    %输入的参数就是前面注释的核函数参数
    %输出的变量函数是核类型,核参数,核变量
    [kernel,kerneloptionvec,variableveccell]=CreateKernelListWithVariable(variablevec,dim,kernelt,kerneloptionvect);
    %这个变量的功能是归一化操作,具体见UnitTraceNormalization里面的参数
    %输入的参数是数据xapp以及核参数
    %输出的是初始权值和核参数信息。
    [Weight,InfoKernel]=UnitTraceNormalization(xapp,kernel,kerneloptionvec,variableveccell);
    
    %根据得到的初始的核信息参数,得到对应的参数K,这个K的功能是SVM中的包含所有Gram矩阵的矩阵
    K=mklkernel(xapp,InfoKernel,Weight,options);
 
    tic
    %开始进行SVM训练,具体见mklsvm函数的内部注释
    [beta,w,b,posw,story(i),obj(i)] = mklsvm(K,yapp,C,options,verbose);
    timelasso(i)=toc%配合tic,toc计算SVM训练时间
    
    
    %这个部分开始测试,使用前面训练得到的参数对新的测试数据进行测试。
    Kt=mklkernel(xtest,InfoKernel,Weight,options,xapp(posw,:),beta);
    ypred=Kt*w+b;%这个是标准的SVM的识别输出公式,word中有介绍。
 
    bc(i)=mean(sign(ypred)==ytest)%计算误差
 
end;%
tt2=story.KKTconstraint
相关文章
|
9天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
9天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
105 68
|
18天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
11天前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
102 11
架构学习:7种负载均衡算法策略
|
19天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
19天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
17天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
16天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
22天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
22天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。