基于维纳滤波的图像运动模糊还原matlab仿真

简介: 基于维纳滤波的图像运动模糊还原matlab仿真

1.算法描述

    在信号处理中,维纳滤波是常用的降噪方法,它能够把实际信号从带有噪声的观测量中提取出来,无论是在语言信号还是图像信号中,维纳滤波都有重要的应用。维纳滤波是一种线性最小均方误差(LMMSE)估计,线性指的是这种估计形式是线性的,最小方差则是我们后面构造滤波器的优化准则,也就是说实际信号与估计量的差 y−y^ 要有最小的方差。而维纳滤波就是要构造一种滤波器,使得观测信号通过滤波器后能够得到的输出是实际信号的最小均方误差估计。最后说明一下,本文讲述的维纳滤波都是基于离散时间域的,一方面是因为在实际中一般需要处理的都是离散的情况,另一方面是对于连续域的情况分析较为复杂抽象故这里不予讨论。

    维纳滤波(wiener filtering) 一种基于最小均方误差准则、对平稳过程的最优估计器。这种滤波器的输出与期望输出之间的均方误差为最小,因此,它是一个最佳滤波系统。它可用于提取被平稳噪声污染的信号。从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值,而相应的装置称为滤波器。根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。维纳滤波器是一种线性滤波器。

081764992a5215645f265498029681b6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   对原始图像进行维纳滤波的算法是首先估计出每个像素点的M*N邻域内的平均值和方差值。有如下两个表达式计算: 

f6e973dfb576a963dcc4624151be28b5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    用如下的表达式计算输出的灰度值。其中a(n1,n2)是调整前的灰度值,b(n1,n2)是调整后的灰度值。

f20ea372ee1a7d3fbdceaa0a84437204_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

     维纳滤波的基本原理是:设观察信号y(t)含有彼此统计独立的期望信号x(t)和白噪声ω(t)可用维纳滤波从观察信号y(t)中恢复期望信号x(t)。从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲激响应。如果能够满足维纳-霍夫方程 ,就可使维纳滤波器达到最佳。

优点:适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。

缺点:要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。

2.仿真效果预览
matlab2022a仿真结果如下:

b9ada58770fb206685ae61bc2fb4d970_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0b92ffb9d2d585b587be6f625eb93f36_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f7627e3985aad0e0477a7886a9ce6296_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fae9582e713cea3e0cec304db09e1d1c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

figure(2);
subplot(231),imshow(I),title('原始图像');
 
LEN = 20;
THETA =10;
PSF = fspecial('motion',LEN,THETA);
 
Blurred = imfilter(I,PSF,'circular');
subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');
 
noise = 0.1*randn(size(I));
subplot(233),imshow(im2uint8(noise)),title('随机噪声');
 
BlurredNoisy=imadd(Blurred,im2uint8(noise));
subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');
 
Move=deconvwnr(Blurred,PSF);
subplot(235),imshow(Move),title('还原运动模糊的图像');
 
nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);
wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);
subplot(236),imshow(wnr2),title('还原添加了噪声的图像');
 
%*************************维纳滤波应用于边缘提取****************************
N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改
M = I - N;
My_Wedge = im2bw (M,5/256);%化二值图像
BW1 = edge(I,'prewitt');
BW2 = edge(I,'canny');
BW3 = edge(I,'zerocross');
BW4 = edge(I,'roberts');
 
figure(3)
subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取');
subplot(241),imshow(BW1),title('prewitt');
subplot(242),imshow(BW2),title('canny');
subplot(245),imshow(BW3),title('zerocross');
subplot(246),imshow(BW4),title('roberts');
 
%*************************维纳滤波应用于图像增强***************************
for i = [1 2 3 4 5]
    K = wiener2(I,[5,5]);
end
 
  K = K + I;
相关文章
|
9天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
8天前
|
机器学习/深度学习 算法 安全
m基于Q-Learning强化学习的路线规划和避障策略matlab仿真
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
15 0
|
1天前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
2天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
6天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
26 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
8天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
9天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
9天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
13 1
|
9天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
9天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章