基于图像特征检测——使用相位拉伸变换(Matlab代码实现)

简介: 基于图像特征检测——使用相位拉伸变换(Matlab代码实现)

💥1 概述

在过去的几十年里,深度学习和计算机视觉在目标检测、目标跟踪、行人检测和自动驾驶汽车方面发挥了趋势引导作用。一些方法被提出来解决这些计算机视觉和基于深度学习的检测、跟踪技术、算法和数据源的问题。近年来,这一领域变得越来越重要,研究人员利用有关图像和视频的在线/离线数据,集中进行情绪建模和计算分析。比较了灰度和相位的两种不同的图像边缘提取方法及其提取结果。相位的边缘检测方法是以Hilbert变换为出发点建立的相位一致性模型,并且它有一种计算量比较小的近似算法——局部能量模型。最后通过logGabor函数构造的小波,对图像边缘进行提取并比较了结果,说明了相位边缘的通用性;通过对马赫带现象的检测,说明相位一致性模型更符合人类视觉系统的特性。图像锐化是图像增强的主要内容之一,在图像分析、图像理解以及医学图像等领域均有重要的应用。现有图像锐化方法对图像中的弱强度变化特征增强效果不明显,并且在边缘附近还会出现毛刺与噪声。为解决这些问题,提出一种基于相位拉伸变换结合相对总变分的图像锐化算法,本文章就用Matlab代码实现。


📚2 运行结果

部分代码:

% test script to test PST function
clc  % clear screen
clear all  % clear all variables
close all   % close all figures
% import original image
Image_orig=imread('lena_gray_512.tif');
% if image is a color image, convert it to grayscale
try
    Image_orig=rgb2gray(Image_orig);
catch
end
%show the original image
subplot(1,2,1)
imshow(Image_orig)
title('Original Image')
% convert the grayscale image do a 2D double array
Image_orig=double(Image_orig);
% low-pass filtering (also called localization) parameter
handles.LPF=0.21; % Gaussian low-pass filter Full Width at Half Maximum (FWHM) (min:0 , max : 1)
% PST parameters
handles.Phase_strength=0.48;  % PST  kernel Phase Strength
handles.Warp_strength=12.14;  % PST Kernel Warp Strength
% Thresholding parameters (for post processing)
handles.Thresh_min=-1;      % minimum Threshold  (a number between 0 and -1)
handles.Thresh_max=0.0019;  % maximum Threshold  (a number between 0 and 1)
% choose to compute the analog or digital edge
Morph_flag = 1 ; %  Morph_flag=0 to compute analog edge and Morph_flag=1 to compute digital edge.
% Apply PST and find features (sharp transitions)
[Edge PST_Kernel]= PST(Image_orig,handles,Morph_flag);
if Morph_flag ==0
    % show the detected features    
    subplot(1,2,2)
    imshow(Edge/max(max(Edge))*3)
    title('Detected features using PST')
else
    subplot(1,2,2)
    imshow(Edge)
    title('Detected features using PST')
    % overlay original image with detected features
    overlay = double(imoverlay(Image_orig, Edge/1000000, [1 0 0]));
    figure
    imshow(overlay/max(max(max(overlay))));
    title('Detected features using PST overlaid with original image')
end
% show the PST phase kernel gradient
figure
[D_PST_Kernel_x D_PST_Kernel_y]=gradient(PST_Kernel);
mesh(sqrt(D_PST_Kernel_x.^2+D_PST_Kernel_y.^2))
title('PST Kernel phase Gradient')


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]索子恒.图像特征检测与特征提取综述[J].产业创新研究,2022(04):33-35.

[2]吕尧新,刘志强,朱祥华. 基于相位一致性原理的图像特征检测技术[C]//中国通信学会.第九届全国青年通信学术会议论文集.电子工业出版社,2004:1115-1119.


[3]甘金来,刘钊.基于相位的图像特征检测算法[J].实验科学与技术,2006(02):16-19+61.

🌈4 Matlab代码实现

相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
3月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
4月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
5月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
5月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
7月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
8月前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
8月前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
427 8