来自MATLAB的一个残差网络简介【MATLAB】

简介: 来自MATLAB的一个残差网络简介【MATLAB】

对于许多应用来说,使用由一个简单的层序列组成的网络就已足够。


但是,某些应用要求网络具有更复杂的层次图结构,其中的层可接收来自多个层的输入,也可以输出到多个层。这些类型的网络通常称为有向无环图 (DAG) 网络。


残差网络就是一种 DAG 网络,其中的残差(或快捷)连接会绕过主网络层。残差连接让参数梯度可以更轻松地从输出层传播到较浅的网络层,从而能够训练更深的网络。增加网络深度可在执行更困难的任务时获得更高的准确度。



定义网络架构



残差网络架构由以下组件构成:


主分支 - 顺序连接的卷积层、批量归一化层和 ReLU 层。


残差连接 - 绕过主分支的卷积单元。残差连接和卷积单元的输出按元素相加。当激活区域的大小变化时,残差连接也必须包含 1×1 卷积层。残差连接让参数梯度可以更轻松地从输出层流到较浅的网络层,从而能够训练更深的网络。




创建主分支


首先创建网络的主分支。主分支包含五部分。


初始部分 - 包含图像输入层和带激活函数的初始卷积层。


三个卷积层阶段 - 分别具有不同的特征大小(32×32、16×16 和 8×8)。每个阶段包含 N 个卷积单元。在示例的这一部分中,N = 2。每个卷积单元包含两个带激活函数的 3×3 卷积层。netWidth 参数是网络宽度,定义为网络第一卷积层阶段中的过滤器数目。第二阶段和第三阶段中的前几个卷积单元会将空间维度下采样二分之一。为了使整个网络中每个卷积层所需的计算量大致相同,每次执行空间下采样时,都将过滤器的数量增加一倍。


最后部分 - 包含全局平均池化层、全连接层、softmax 层和分类层。


使用 convolutionalUnit(numF,stride,tag) 创建一个卷积单元。numF 是每一层中卷积过滤器的数量,stride 是该单元第一个卷积层的步幅,tag 是添加在层名称前面的字符数组。convolutionalUnit 函数在示例末尾定义。


为所有层指定唯一名称。卷积单元中的层的名称以 'SjUk' 开头,其中 j 是阶段索引,k 是该阶段内卷积单元的索引。例如,'S2U1' 表示第 2 阶段第 1 单元。


**


netWidth = 16;
layers = [
    imageInputLayer([32 32 3],'Name','input')
    convolution2dLayer(3,netWidth,'Padding','same','Name','convInp')
    batchNormalizationLayer('Name','BNInp')
    reluLayer('Name','reluInp')
    convolutionalUnit(netWidth,1,'S1U1')
    additionLayer(2,'Name','add11')
    reluLayer('Name','relu11')
    convolutionalUnit(netWidth,1,'S1U2')
    additionLayer(2,'Name','add12')
    reluLayer('Name','relu12')
    convolutionalUnit(2*netWidth,2,'S2U1')
    additionLayer(2,'Name','add21')
    reluLayer('Name','relu21')
    convolutionalUnit(2*netWidth,1,'S2U2')
    additionLayer(2,'Name','add22')
    reluLayer('Name','relu22')
    convolutionalUnit(4*netWidth,2,'S3U1')
    additionLayer(2,'Name','add31')
    reluLayer('Name','relu31')
    convolutionalUnit(4*netWidth,1,'S3U2')
    additionLayer(2,'Name','add32')
    reluLayer('Name','relu32')
    averagePooling2dLayer(8,'Name','globalPool')
    fullyConnectedLayer(10,'Name','fcFinal')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classoutput')
    ];



相关文章
|
2天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
9天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
28天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
40 2
|
28天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!