m基于GRNN神经网络和高阶累积量的信号类型识别matlab仿真

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: m基于GRNN神经网络和高阶累积量的信号类型识别matlab仿真

1.算法描述

 GRNN,即General Regression Neural Network,中文全称为广义回归神经网络,是由The Lockheed Palo Alto研究实验室在1991年提出的。GRNN是一种新型的基于非线性回归理论的神经网络模型。GRNN是建立在非参数核回归基础之上的,该神经网络是以测试样本为后验条件,并从观测样本中计算得到自变量和因变量之间的概率密度函数,然后在计算出因变量关于自变量的回归值。由于GRNN不需要规定模型的类型,只需要设置神经网络的光滑因子参数,GRNN神经网络的光滑因子参数的取值对神经网络的输出影响较大,当光滑因子参数较大的时候,其对应的神经元所覆盖的输入区域就越大;当光滑因子参数较小的时候,神经网络对应的径向基函数曲线较陡,因此神经网络输出结果更接近期望值,但此时光滑度越差。由于GRNN广义回归神经网络是基于非线性核回归分析的神经网络,因此,对于任意一个非独立变量y,其相对于独立变量x的回归分析的过程是计算具有最大概率值y。现假设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:

f6f3d16ae7ef26190c46737cb61492cf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
397286f1995887d22f88f45a75ad6d83_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9d83460edfc3262e58a63a5eecb5687f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    从图3的结构图可知,GRNN神经网络的输入层神经元数目和输入样本的维度是相同的,即每一个神经元将输入信号直接传递给GRNN神经网络的隐含层中。GRNN神经网络的模式层的神经元数目和学习训练样本的数目相同,即每一个神经元都分别对应着一个不同的学习训练样本.

   特征提取:

1f020f57c1ce90d4151a56128e625039_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
image.png

   高阶统计量,通常是指信号的高阶矩,高阶累积量等信号统计信息的统称。在这些高阶统计量中,高阶累积量具有十分重要的重用,不同阶数的累积量可以反映出信号的不同特征,因此高阶累积量往往应用在信号分类,信号调制方式识别等领域。高阶累积量中的二阶累积量和四阶累积量可以有效抑制高斯白噪声的干扰,且对相位偏移具有一定的容错能力,其数学表达式为: 

6.png
7.png

第一、研究了基于高阶累积量的信噪比盲估计法和基于信号子空间信噪比盲估计法的基本原理。其中,高阶累积量的原理是通过计算信号矩的方式获得信号能量与噪声能量的估计值。信号子空间法的原理是通过对信号协方差矩阵的分解来分离信号与噪声,从而得到信号的信噪比估计值。

第二、通过MATLAB对高阶累积量信噪比估计法与信号子空间信噪比估计法进行了性能分析。分别分析了高阶累积量信噪比估计法与信号子空间信噪比估计法的性能、输入信号长度对信噪比估计结果的影响分析、不同采样频率对信噪比估计结果的影响分析、不同频偏对信噪比估计结果的影响分析、定时误差对信噪比估计结果的影响分析。仿真实验表明信号子空间信噪比估计法性能优于高阶累积量信噪比估计法。

2.仿真效果预览
matlab2022a仿真结果如下:

8373a0fa3103dafdf59172b26791b768_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
233b2f4cbbd2bf1ee97447800b373310_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
image.png
aa236aec382c9d923fd2ffeace6d26e0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
23bf87ed7df5ce7c91b7051a6659d632_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

从仿真结果可知,8个特征中,特征3,4,6,8,对整体的识别性能最好。

04ed28b2c10d107440f4e5ea6ed95d74_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

从性能看,直接采用4个特征,性能不如8个特征好,这是由于,当采用四个特征的时候,无法反应实际信号的各个特点,而8个特征,则反应的比较全面,可以更好的区分不同类型的信号。

1a3125a2f3dd3e2ce25ef7f66263d614_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

从仿真结果看,参数0.1的时候,性能可以达到最优。

3.MATLAB核心程序

SNRs = [5:1:12];
Err  = zeros(size(SNRs));
MTKL = 20;
for jj = 1:length(SNRs)
jj
SNR=SNRs(jj);
for ii = 1:MTKL
    rng(ii);
%%
%产生需要测试的无线信号
%1:WIFI
if SEL == 1
   Signal = func_wifi(SNR); 
end
%2:3G
if SEL == 2
   Signal = func_3G_mobile(SNR); 
end
%3:Fsk广播信号
if SEL == 3
   Signal = func_2FSK(5000);
end
%采样化处理
Fs      = 1e6;   %信号采样率
fc      = Fs/32;  %信号采样率
nsamp   = 32;    %过采样率
delay   = 16;    %根号下升余弦的群时延
dataout = RRCsend(Signal,Fs,nsamp,delay); 
%基于SDR的上变频
if SEL == 1 | SEL == 2
   R = real(dataout).*cos(2*pi*fc*[1:length(dataout)]/Fs) + imag(dataout).*sin(2*pi*fc*[1:length(dataout)]/Fs);
end
if SEL == 3
   R = dataout;
end
%通过噪声信道
dataout = awgn(R,SNR,'measured');
%%
%以下是SDR的接收平台
Rec     = dataout;
%特征提取
char    = real(func_para_check(real(Rec),Fs,fc));
%识别
load Grnn.mat
T(ii) = round(sim(Net,char'));
end
Err(jj) = length(find(T==SEL))/MTKL;
end
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
2天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
26 16
|
1天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
20 5
|
1天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
10天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
47 17
|
20天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
21天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
43 10
|
23天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
46 10
|
23天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
24天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

热门文章

最新文章