m基于GRNN神经网络和高阶累积量的信号类型识别matlab仿真

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: m基于GRNN神经网络和高阶累积量的信号类型识别matlab仿真

1.算法描述

 GRNN,即General Regression Neural Network,中文全称为广义回归神经网络,是由The Lockheed Palo Alto研究实验室在1991年提出的。GRNN是一种新型的基于非线性回归理论的神经网络模型。GRNN是建立在非参数核回归基础之上的,该神经网络是以测试样本为后验条件,并从观测样本中计算得到自变量和因变量之间的概率密度函数,然后在计算出因变量关于自变量的回归值。由于GRNN不需要规定模型的类型,只需要设置神经网络的光滑因子参数,GRNN神经网络的光滑因子参数的取值对神经网络的输出影响较大,当光滑因子参数较大的时候,其对应的神经元所覆盖的输入区域就越大;当光滑因子参数较小的时候,神经网络对应的径向基函数曲线较陡,因此神经网络输出结果更接近期望值,但此时光滑度越差。由于GRNN广义回归神经网络是基于非线性核回归分析的神经网络,因此,对于任意一个非独立变量y,其相对于独立变量x的回归分析的过程是计算具有最大概率值y。现假设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:

f6f3d16ae7ef26190c46737cb61492cf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
397286f1995887d22f88f45a75ad6d83_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9d83460edfc3262e58a63a5eecb5687f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    从图3的结构图可知,GRNN神经网络的输入层神经元数目和输入样本的维度是相同的,即每一个神经元将输入信号直接传递给GRNN神经网络的隐含层中。GRNN神经网络的模式层的神经元数目和学习训练样本的数目相同,即每一个神经元都分别对应着一个不同的学习训练样本.

   特征提取:

1f020f57c1ce90d4151a56128e625039_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
image.png

   高阶统计量,通常是指信号的高阶矩,高阶累积量等信号统计信息的统称。在这些高阶统计量中,高阶累积量具有十分重要的重用,不同阶数的累积量可以反映出信号的不同特征,因此高阶累积量往往应用在信号分类,信号调制方式识别等领域。高阶累积量中的二阶累积量和四阶累积量可以有效抑制高斯白噪声的干扰,且对相位偏移具有一定的容错能力,其数学表达式为: 

6.png
7.png

第一、研究了基于高阶累积量的信噪比盲估计法和基于信号子空间信噪比盲估计法的基本原理。其中,高阶累积量的原理是通过计算信号矩的方式获得信号能量与噪声能量的估计值。信号子空间法的原理是通过对信号协方差矩阵的分解来分离信号与噪声,从而得到信号的信噪比估计值。

第二、通过MATLAB对高阶累积量信噪比估计法与信号子空间信噪比估计法进行了性能分析。分别分析了高阶累积量信噪比估计法与信号子空间信噪比估计法的性能、输入信号长度对信噪比估计结果的影响分析、不同采样频率对信噪比估计结果的影响分析、不同频偏对信噪比估计结果的影响分析、定时误差对信噪比估计结果的影响分析。仿真实验表明信号子空间信噪比估计法性能优于高阶累积量信噪比估计法。

2.仿真效果预览
matlab2022a仿真结果如下:

8373a0fa3103dafdf59172b26791b768_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
233b2f4cbbd2bf1ee97447800b373310_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
image.png
aa236aec382c9d923fd2ffeace6d26e0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
23bf87ed7df5ce7c91b7051a6659d632_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

从仿真结果可知,8个特征中,特征3,4,6,8,对整体的识别性能最好。

04ed28b2c10d107440f4e5ea6ed95d74_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

从性能看,直接采用4个特征,性能不如8个特征好,这是由于,当采用四个特征的时候,无法反应实际信号的各个特点,而8个特征,则反应的比较全面,可以更好的区分不同类型的信号。

1a3125a2f3dd3e2ce25ef7f66263d614_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

从仿真结果看,参数0.1的时候,性能可以达到最优。

3.MATLAB核心程序

SNRs = [5:1:12];
Err  = zeros(size(SNRs));
MTKL = 20;
for jj = 1:length(SNRs)
jj
SNR=SNRs(jj);
for ii = 1:MTKL
    rng(ii);
%%
%产生需要测试的无线信号
%1:WIFI
if SEL == 1
   Signal = func_wifi(SNR); 
end
%2:3G
if SEL == 2
   Signal = func_3G_mobile(SNR); 
end
%3:Fsk广播信号
if SEL == 3
   Signal = func_2FSK(5000);
end
%采样化处理
Fs      = 1e6;   %信号采样率
fc      = Fs/32;  %信号采样率
nsamp   = 32;    %过采样率
delay   = 16;    %根号下升余弦的群时延
dataout = RRCsend(Signal,Fs,nsamp,delay); 
%基于SDR的上变频
if SEL == 1 | SEL == 2
   R = real(dataout).*cos(2*pi*fc*[1:length(dataout)]/Fs) + imag(dataout).*sin(2*pi*fc*[1:length(dataout)]/Fs);
end
if SEL == 3
   R = dataout;
end
%通过噪声信道
dataout = awgn(R,SNR,'measured');
%%
%以下是SDR的接收平台
Rec     = dataout;
%特征提取
char    = real(func_para_check(real(Rec),Fs,fc));
%识别
load Grnn.mat
T(ii) = round(sim(Net,char'));
end
Err(jj) = length(find(T==SEL))/MTKL;
end
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
5天前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
|
5天前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
3天前
|
安全 网络安全 数据安全/隐私保护
数字堡垒之下:网络安全漏洞与信息安全的守护之路
在数字化浪潮中,网络安全成为保护个人隐私和企业数据的关键防线。本文将探讨网络漏洞的发现与利用,加密技术在信息保护中的作用,以及提升安全意识的重要性。我们将从基础概念出发,通过案例分析,深入了解网络攻防的动态平衡,并分享实用的安全策略,旨在为读者提供一条清晰的信息安全守护路径。
11 2
|
2天前
|
安全 算法 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第8天】本文将探讨网络安全与信息安全的重要性,以及如何保护个人和组织的信息资产。我们将讨论网络安全漏洞、加密技术、安全意识等方面的内容,并提供一些实用的建议和技巧来帮助读者提高他们的网络安全水平。无论你是个人用户还是企业管理员,都可以从本文中获得有关如何保护自己免受网络威胁的有用信息。
179 89
|
2天前
|
存储 监控 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第9天】在数字化时代,网络安全和信息安全已成为我们生活的重要组成部分。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的知识和技巧来保护您的个人信息和数据安全。我们将通过深入浅出的方式,帮助您了解网络威胁的来源,如何利用加密技术保护自己的数据,以及如何提高自己的安全意识。无论您是个人用户还是企业,这些知识都将对您有所帮助。让我们一起来学习如何保护自己的网络安全吧!
|
2天前
|
安全 网络协议 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第9天】在数字时代,网络安全和信息安全成为了全球关注的焦点。本文将深入探讨网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者更好地了解这些概念,并提高自身的网络安全意识和技能。
|
1天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第9天】随着互联网的普及,网络安全问题日益严重。本文将介绍网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者了解网络安全的重要性,并提供一些实用的技巧和建议。
23 12
|
1天前
|
安全 网络安全 数据安全/隐私保护
数字堡垒之下:网络安全与信息安全的现代博弈
在数字化时代的浪潮中,网络空间已成为新的战场。本文以通俗易懂的语言,探讨了网络安全漏洞、加密技术的重要性以及提升个人和组织安全意识的必要性。通过深入浅出的分析,旨在启发读者思考如何在日益复杂的网络环境中保护自己的数字身份和资产。正如甘地所言,“你必须成为你希望在世界上看到的改变”,在网络安全的世界里,我们每个人都是守护者,也是变革者。
|
2天前
|
SQL 安全 算法
数字堡垒之下:网络安全与信息安全的现代挑战
在数字化时代的波澜壮阔中,网络安全与信息安全成为我们不得不直面的严峻话题。本文将带您一探究竟,从网络漏洞的暗流涌动到加密技术的坚固盾牌,再到提升个人与企业的安全意识,我们将深入浅出地探讨这些概念并分享实用的知识。让我们一同筑起数字世界的安全防线,保护数据不受侵犯,维护网络空间的和平稳定。
|
1天前
|
存储 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第9天】随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的基本概念、常见漏洞及其防范措施,探讨加密技术在保护信息安全中的作用,并强调提升个人安全意识的重要性。通过本文,读者将了解到如何识别和应对网络威胁,以及如何利用加密技术和提高安全意识来保护自己的信息资产。