【鲸鱼算法】基于融合动态概率阈值和自适应变异的鲸鱼优化算法PTMWOA求解单目标优化问题附matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【鲸鱼算法】基于融合动态概率阈值和自适应变异的鲸鱼优化算法PTMWOA求解单目标优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对基本鲸鱼优化算法在非线性优化问题中存在的收敛精度低,易陷入局部最优解的问题,提出一种融合动态概率阈值和自适应变异的鲸鱼优化算法.首先,利用Fuch混沌和反向学习生成均匀的初始种群;其次,设计基于双曲余弦函数的动态调整概率阈值以协调算法全局搜索与局部开采能力,采用可变权重对鲸鱼位置更新公式修正,提高收敛速度和精度;最后,对鲸鱼精英个体引入自适应变异策略,以避免算法陷入局部最优解而搜索停滞.对13个基准测试函数仿真实验,结果表明,与基本GWO算法,PSO算法以及鲸鱼优化算法相比,该算法具有更好的求解精度,收敛速度.

⛄ 部分代码

%_________________________________________________________________________%

% 鲸鱼优化算法             %

%_________________________________________________________________________%

% The Whale Optimization Algorithm

function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


% initialize position vector and score for the leader

Leader_pos=zeros(1,dim);

Leader_score=inf; %change this to -inf for maximization problems



%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);


Convergence_curve=zeros(1,Max_iter);


t=0;% Loop counter


% Main loop

while t<Max_iter

   for i=1:size(Positions,1)

       

       % Return back the search agents that go beyond the boundaries of the search space

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;

       

       % Calculate objective function for each search agent

       fitness=fobj(Positions(i,:));

       

       % Update the leader

       if fitness<Leader_score % Change this to > for maximization problem

           Leader_score=fitness; % Update alpha

           Leader_pos=Positions(i,:);

       end

       

   end

   

   a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)

   

   % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)

   a2=-1+t*((-1)/Max_iter);

   

   % Update the Position of search agents

   for i=1:size(Positions,1)

       r1=rand(); % r1 is a random number in [0,1]

       r2=rand(); % r2 is a random number in [0,1]

       

       A=2*a*r1-a;  % Eq. (2.3) in the paper

       C=2*r2;      % Eq. (2.4) in the paper

       

       

       b=1;               %  parameters in Eq. (2.5)

       l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)

       

       p = rand();        % p in Eq. (2.6)

       

       for j=1:size(Positions,2)

           

           if p<0.5  

               if abs(A)>=1

                   rand_leader_index = floor(SearchAgents_no*rand()+1);

                   X_rand = Positions(rand_leader_index, :);

                   D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)

                   Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)

                   

               elseif abs(A)<1

                   D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)

                   Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)

               end

               

           elseif p>=0.5

             

               distance2Leader=abs(Leader_pos(j)-Positions(i,j));

               % Eq. (2.5)

               Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);

               

           end

           

       end

   end

   t=t+1;

   Convergence_curve(t)=Leader_score;

end



⛄ 运行结果

⛄ 参考文献

[1]毕孝儒, 牟琦, 龚尚福. 融合动态概率阈值和自适应变异的鲸鱼优化算法[J]. 微电子学与计算机, 2019, 36(12):7.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
245 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
146 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
115 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章