【DSW Gallery】基于EasyCV的BEVFormer 3D检测示例

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文将以BEVFormer 3D检测为例,为您介绍如何在PAI-DSW中使用EasyCV。

直接使用

请打开基于基于EasyCV的BEVFormer 3D检测示例,并点击右上角 “ 在DSW中打开” 。

image.png

EasyCV BEVFormer 3D检测示例

  BEVFormer是一种纯视觉的自动驾驶感知算法,通过融合环视相机图像的空间和时序特征显式的生成具有强表征能力的BEV特征,并应用于下游3D检测、分割等任务,取得了SOTA的结果。我们在EasyCV开源框架中,对BEVFomer算法进行集成,并从训练速度、算法收敛速度角度对代码进行了一些优化。

  本文将介绍如何在pai-dsw基于EasyCV快速使用BEVFormer进行3D检测模型模型的训练、推理。

运行环境要求

GPU机型 A100 80G,CUDA >= 11.1

推荐使用dsw官方镜像 modelscope:tf1.15torch1.11-gpu-py37-ubuntu20.04

安装依赖包

1、安装EasyCV算法包

! echo y | pip uninstall pai-easycv && wget https://github.com/alibaba/EasyCV/archive/refs/heads/master.zip && pip install master.zip

2、安装libturbojpeg及依赖用于数据读取加速

! apt-get update
! apt-get install libturbojpeg
! pip install -U git+https://github.com/lilohuang/PyTurboJPEG.git

NuScenes 3D检测模型训练

下面介绍如何利用NuScenes数据,使用BEVFormer模型进行3D检测模型的训练评估、模型预测

数据准备

下载mini-NuScenes数据,并解压

! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection3d/nuscenes-v1.0-mini.tar.gz && tar -xf nuscenes-v1.0-mini.tar.gz

下载并调整配置文件

下载训练配置文件,为了节省训练时间,对参数进行一些调整

# 修改data_root
data_root = '/mnt/workspace/nuscenes-v1.0-mini/'
# 导入预训练模型,确保模型精度
load_from = 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection3d/bevformer/v2/epoch_24.pth'
# 修改epoch数目,节省训练时间
total_epochs = 1
! rm -f bevformer_base_r101_dcn_nuscenes.py
! wget https://raw.githubusercontent.com/alibaba/EasyCV/master/configs/detection3d/bevformer/bevformer_base_r101_dcn_nuscenes.py

训练模型

使用单卡gpu进行训练和验证集评估,为了快速跑通,设置epoch为1。

! python -m easycv.tools.train  bevformer_base_r101_dcn_nuscenes.py --work_dir work_dirs/detection3d/bevformer

预测

# 查看训练产生的pt文件,并准备测试文件
! ls  work_dirs/detection3d/bevformer/*
! cd nuscenes-v1.0-mini

导入模型权重和config,并预测测试数据进行预测

import torch
import mmcv
from easycv.predictors import BEVFormerPredictor
predictor = BEVFormerPredictor(
    model_path='../work_dirs/detection3d/bevformer/epoch_1.pth',
    config_file='../bevformer_base_r101_dcn_nuscenes.py',
)
inputs = mmcv.load('nuscenes_infos_temporal_val.pkl')['infos'][:1]
predict_results = predictor(inputs)
print(predict_results)


相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
缓存 API 数据库
Py之lmdb:lmdb的简介、安装、使用方法之详细攻略
Py之lmdb:lmdb的简介、安装、使用方法之详细攻略
Py之lmdb:lmdb的简介、安装、使用方法之详细攻略
|
机器学习/深度学习 计算机视觉 Python
【DRConv】动态区域感知卷积结构可提升卷积的表示能力 | 复现《Dynamic Region-Aware Convolution》
【DRConv】动态区域感知卷积结构可提升卷积的表示能力 | 复现《Dynamic Region-Aware Convolution》
441 1
【DRConv】动态区域感知卷积结构可提升卷积的表示能力 | 复现《Dynamic Region-Aware Convolution》
|
存储 Serverless 文件存储
函数计算产品使用问题之如何在一键部署的ComfyUI中上传大模型和插件
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
安全
如何打开关闭Edge鼠标手势
【8月更文挑战第28天】本文介绍了在 Microsoft Edge 浏览器中开启和关闭鼠标手势的方法。首先,通过浏览器设置菜单进入设置页面;然后,查找“鼠标手势”设置或在相关类别中搜索。由于 Edge 可能未内置此功能,可考虑安装支持鼠标手势的扩展程序,如 CrxMouse 鼠标手势,以实现该功能。安装时需注意安全性和可靠性。
5026 5
|
存储 开发框架 .NET
ASP.NET Core SignalR系列之Hub教程
ASP.NET Core SignalR系列之Hub教程
435 0
|
机器学习/深度学习 编解码 自然语言处理
纯卷积BEV模型的巅峰战力 | BEVENet不用Transformer一样成就ADAS的量产未来
纯卷积BEV模型的巅峰战力 | BEVENet不用Transformer一样成就ADAS的量产未来
409 0
|
设计模式 消息中间件 存储
揭秘中介者模式-如何优雅地管理对象间的沟通
本文深入探讨了中介者模式在软件设计中的应用。中介者模式,作为一种行为型设计模式,通过引入中介者对象有效管理对象间的复杂交互,降低了系统的耦合度。文章详细分析了该模式的优点,如提高系统的灵活性和可维护性,同时也指出了其面临的挑战和局限,如中介者可能变得庞大难以维护、动态性处理复杂等。在使用中介者模式时,需要权衡利弊,合理设计中介者类,并持续维护系统的可扩展性和可维护性。总之,中介者模式为软件设计提供了一种有效的解耦和协调交互的机制,但需要根据具体场景和需求谨慎选择和应用。通过合理使用中介者模式,可构建更...
468 0
揭秘中介者模式-如何优雅地管理对象间的沟通
|
算法 PyTorch 算法框架/工具
【DSW Gallery】基于EasyCV的视频分类示例
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文以视频分类为例,为您介绍如何在PAI-DSW中使用EasyCV。
【DSW Gallery】基于EasyCV的视频分类示例
|
机器学习/深度学习 数据采集 人工智能
人工智能中噪声数据的产生与处理方法详解
人工智能中噪声数据的产生与处理方法详解
1353 0

热门文章

最新文章