开发者社区> 游客muas22kepq7du> 正文

《python机器学习从入门到高级》分类算法实现:上(含详细代码)

简介: 《python机器学习从入门到高级》分类算法实现:上(含详细代码)
+关注继续查看

《python机器学习从入门到高级》分类算法:(上)

  • ✨本文收录于《python机器学习从入门到高级》专栏,此专栏主要记录如何使用python实现机器学习模型,尽量坚持每周持续更新,欢迎大家订阅!
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

本专栏主要从==代码角度==介绍如何使用python实现机器学习算法,想要了解具体机器学习理论的小伙伴,可以看我的这个专栏:统计学习方法

@TOC

我们在之前的文章已经介绍了机器学习的一些基础概念,当拿到一个数据之后如何处理、如何评估一个模型、以及如何对模型调参等。接下来,我们正式开始学习如何实现机器学习的一些算法。
回归和==分类==是机器学习的两大最基本的问题,对于==分类算法==的详细理论部分。大家可以参考我这篇文章统计学习方法之分类算法详解
本文主要从python代码的角度来实现分类算法。

# 导入相关库
import sklearn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

🌳1. 数据准备

下面我们以mnist数据集为例进行演示,这是一组由美国人口普查局的高中生和雇员手写的70000个数字图像。每个图像都用数字表示。也是分类问题非常经典的一个数据集

# 导入mnist数据集
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
mnist.keys()
dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details', 'url'])


其中data是我们输入的特征,target0-9的数字

X, y = mnist["data"], mnist["target"]
X.shape,y.shape
((70000, 784), (70000,))


可以看出一共有70000图像,其中X一共有784个特征,这是因为图像是28×28的,每个特征是0-255之间的。下面我们通过imshow()函数将其进行还原

%matplotlib inline
import matplotlib as mpl
digit = X[0]
digit_image = digit.reshape((28, 28))#还原成28×28
plt.imshow(digit_image, cmap=mpl.cm.binary)
plt.axis("off")
plt.savefig("some_digit_plot")
plt.show()


png

从我们人类角度来看,我们很容易辨别它是5,我们要做的是,当给机器一张图片时,它能辨别出正确的数字吗?我们来看看y的值

y[0]
'5'


我们要实现的就是,给我们一张图片,不难发现这是一个==多分类任务==,下面我们正式进入模型建立,首先将数据集划分为==训练集和测试集==,这里简单的将前60000个划分为训练集,后10000个为测试集,具体代码如下

y = y.astype(np.uint8)#将y转换成整数
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

🌴2.简单二元分类实现

在实现多分类任务之前,我们先从一个简单的问题考虑,现在假设我只想知道给我一张图片,它是否是7(我最喜欢的数字)。这个时候就是一个简单的二分类问题,首先我们要将我们的目标变量进行转变,具体代码如下

y_train_7 = (y_train == 7)
y_test_7 = (y_test == 7)

现在,我们选择一个分类器并对其进行训练。我们先使用==SGD==(随机梯度下降)分类器

from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=123)#设置random_state为了结果的重复性
sgd_clf.fit(X_train, y_train_7)
SGDClassifier(random_state=123)


训练好模型之后我们可以进行预测,以第一张图片为例,我们预测一下它是否是7(很显然我们知道不是)

sgd_clf.predict(X[0].reshape((1,-1)))
array([False])


可以看出判断正确了,在之前我们讨论了==模型评估==的方法,详细介绍看这篇文章:Python机器学习从入门到高级:模型评估和选择(含详细代码)
下面演示如何用代码实现各个评估指标

🌵3.模型评估

我们根据分类评估指标来看看SGD分类器效果

🌾3.1 准确率

from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_7, cv=3, scoring="accuracy")
array([0.97565, 0.97655, 0.963  ])


🌿3.2 混淆矩阵

y_train_pred = sgd_clf.predict(X_train)
from sklearn.metrics import confusion_matrix
confusion_matrix(y_train_7, y_train_pred)
array([[53304,   431],
       [  550,  5715]], dtype=int64)


☘️3.3 召回率和精确度

from sklearn.metrics import precision_score, recall_score

print('precision:',precision_score(y_train_7, y_train_pred))
print('recall:',recall_score(y_train_7,y_train_pred))
precision: 0.929873088187439
recall: 0.9122106943335994


下面要用的matplotlib,想了解matplotlib可以看这篇文章:Python数据可视化大杀器之地阶技法:matplotlib(含详细代码)

🍁3.4 ROC曲线

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_7, y_scores)
plt.plot(fpr, tpr, linewidth=2)
plt.plot([0, 1], [0, 1], 'k--') 
plt.axis([0, 1, 0, 1])                                   
plt.xlabel('False Positive Rate (Fall-Out)', fontsize=16) 
plt.ylabel('True Positive Rate (Recall)', fontsize=16)    
plt.grid(True)                  


png

本章的介绍到此介绍,下一章介绍==分类算法(下):如何完成多分类任务==

🎄推荐文章

🎉统计学习方法之分类算法详解
Python数据可视化大杀器之地阶技法:matplotlib(含详细代码)
🎉Python机器学习从入门到高级:模型评估和选择(含详细代码)

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Python机器学习
机器学习建模
7 0
BXA
C++与Python:哪种语言更适合机器学习
机器学习是一种人工智能的应用,它可以让计算机通过对大量数据的学习和分析,自动地寻找数据中的规律和模式,并且利用这些规律和模式进行预测和决策,从而达到人工智能的效果。机器学习技术在人脸识别、语音识别、推荐系统、自然语言处理等多个领域都有广泛的应用
19 0
BXA
Python机器学习:Scikit-learn
Scikit-learn 是基于 Python 语言的机器学习工具库,它提供了诸如分类、回归、聚类等常用机器学习任务的 API,同时提供了许多常用的数据预处理工具和数据可视化工具。Scikit-learn 的设计旨在与 NumPy、SciPy 和 matplotlib 工具一起使用,因此可以轻松地与这些库进行集成。
13 0
我为什么将机器学习主力语言从Python转到Rust
Rust语言诞生于2010年,一种多范式、系统级、高级通用编程语言,旨在提高性能和安全性,特别是无畏并发。虽然与Python相比,Rust还年轻,很多库还在开发中,但Rust社区非常活跃并且增长迅猛。很多大厂都是Rust基金会的成员,都在积极地用Rust重构底层基础设施和关键系统应用。
17 0
机器学习 - [源码实现决策树小专题]决策树中混杂度数值度量的Python编程实现(信息熵和基尼系数的计算)
顾名思义,所谓混杂度就是指无序程度,一般使用“信息熵”(香浓熵)或者“及逆序数进行度量”。本文介绍及其学习决策树算法中混杂度数值度量的Python编程实现
14 0
机器学习 - 决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现
本文介绍决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现
19 0
【Python】fastapi框架之Web部署机器学习模型
【Python】fastapi框架之Web部署机器学习模型
82 0
python机器学习数据建模与分析——数据预测与预测建模
机器学习的预测建模在多个领域都具有重要的应用价值,包括个性化推荐、商品搜索、自动驾驶、人脸识别等。本篇文章将带领大家了解什么是预测建模
65 0
python机器学习——朴素贝叶斯算法笔记详细记录
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
37 0
python机器学习课程——决策树全网最详解超详细笔记附代码
决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。决策树算法构造决策
48 0
+关注
游客muas22kepq7du
文章
问答
视频
文章排行榜
最热
最新
相关电子书
更多
PAI分布式机器学习平台
立即下载
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载