- ✨本文收录于【深度学习】:《PyTorch入门到项目实战》专栏,此专栏主要记录如何使用
PyTorch
实现深度学习笔记,尽量坚持每周持续更新,欢迎大家订阅! - 🌸个人主页:JoJo的数据分析历险记
- 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
- 💌如果文章对你有帮助,欢迎✌
关注
、👍点赞
、✌收藏
、👍订阅
专栏
参考资料:本专栏主要以沐神《动手学深度学习》为学习资料,记录自己的学习笔记,能力有限,如有错误,欢迎大家指正。同时沐神上传了的教学视频和教材,大家可以前往学习。
写在前面
softmax回归模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签y可以取两个以上的值。本文基于MNIST手写数字数据集来演示如何使用Pytorch实现softmax回归。🎄 # 🍓1. 数据集导入 首先我们来简单的介绍一些`softmax`回归基本模型,基本思路如下: $$ P(class=i) = \frac{e^i}{\sum e^i} $$ 损失函数使用`交叉熵`: $$ l(y,\hat y) = -\frac{1}{m}\sum y_ilog{\hat y_i} $$ ```python # 当如相关库 import torch import torch.nn as nn from torchvision import datasets,transforms from torch.utils import data import matplotlib.pyplot as plt import numpy as np import torch.optim as optim ``` 在这里与之前不同的是我们导入了`torchvision`,它是处理计算机视觉常用的一个库。沐神在这里使用了`FashionMnis`t数据集,我在这里还是使用`Mnist`数据集,具体的下载代码如下所示。其中train参数可以设置训练集和测试集 ```python trans = transforms.ToTensor() train = datasets.MNIST(root='./data',download=True,train=True,transform=trans) test = datasets.MNIST(root='./data',download=True,train=False,transform=trans) ``` `Mnist数据集`由10个数字的图像组成的。其中训练集有60000张图片,测试集有10000张图片。训练集用于模型的拟合,测试集用于评估模型的好坏 ```python len(train), len(test) ``` (60000, 10000) 每张图片的像素均是`28*28`,并且是灰度图像,所以通道数为1 ```python train[0][0].shape ``` torch.Size([1, 28, 28]) 我们来看一下训练集中的特征和标签,. ```python X, y = next(iter(data.DataLoader(train, batch_size=25))) y ``` tensor([5, 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1, 1]) y代表的是`0-9`的数字,下面我们将图形绘制出来 ```python def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): """绘制图像列表""" figsize = (num_cols * scale, num_rows * scale) _, axes = plt.subplots(num_rows, num_cols, figsize=figsize) axes = axes.flatten() for i, (ax, img) in enumerate(zip(axes, imgs)): if torch.is_tensor(img): # 图片张量 ax.imshow(img.numpy()) else: # PIL图片 ax.imshow(img) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) if titles: ax.set_title(titles[i]) return axes ``` ```python X, y = next(iter(data.DataLoader(train, batch_size=25))) show_images(X.reshape(25, 28, 28), 2, 9) ``` ![png](https://ucc.alicdn.com/images/user-upload-01/img_convert/645b2c760297c075a3064eb7f9258269.png#pic_center) 可以看到第一张图片是5,第二张图片是0。接下来我们想要做的事情是,给电脑一张图片,如何让其返回一个正确的数字。 # 🍅2.初始化参数 因为`softmax`回归需要输入的数据是一个向量,因此首先我们需要将数据进行转换,下面要注意初始化参数的大小。 ```python num_inputs = 784 num_outputs = 10 # 初始化为正态分布 W = torch.normal(0,0.01,size = (num_inputs,num_outputs),requires_grad = True) b = torch.zeros(num_outputs,requires_grad=True) ``` # 🍒3.定义softmax回归 根据`softmax`回归定义,我们可以通过以下三步实现: - 1.对每一项求指数 - 2.求和 - 3.用每一行的数除以和 具体实现代码如下 ```python def softmax(X): X_exp = torch.exp(X) s = X_exp.sum(1, keepdims=True) return X_exp / s ``` 下面我们举一个简单的例子看一下`softmax`函数是如何工作的 ```python z = torch.rand(3, 5) h = softmax(z) print(h) ``` tensor([[0.1768, 0.1426, 0.2773, 0.2582, 0.1450], [0.1580, 0.1307, 0.2118, 0.2411, 0.2583], [0.1863, 0.2572, 0.1148, 0.1996, 0.2420]]) 这样就得出了每一个样本中每一类的概率 进一步定义`softmax`回归模型 ```python def nex(X): return softmax((X.reshape((-1,W.shape[0])).matmul(W)+b)) ``` # 🍑4. 损失函数定义 在这里我们依然使用交叉熵函数处理多分类问题 损失函数: $$ l(y,\hat y) = -\frac{1}{m}\sum y_ilog{\hat y_i} $$ 其中$y_i=0,1$,$\hat{y}_i$是预测的概率 在这里我想介绍两种方法计算损失函数,一种的沐神介绍的,通过索引来进行计算,具体如下所示 ```python def cross_entropy(y_hat, y): return - torch.log(y_hat[range(len(y_hat)), y])# 这里使用y来进行索引 ``` 这里我们使用了y来进行索引,我们来看看一个具体的例子 ```python y_true = torch.tensor([0,1]) y_hat = torch.tensor([[0.1,0.2,0.7],[0.3,0.5,0.2]]) y_hat[[0,1],y_true] ``` tensor([0.1000, 0.5000]) 这里返回的是第一个样本中第一类是正确分类的,和第二个样本中的第二类是正确分类的。所以交叉熵的计算就是 $$-\frac{1}{2}(1\times log(0.1)+ 1\times log(0.5))$$ ```python cross_entropy(y_hat,y_true).mean() ``` tensor(1.4979) 等价于: ```python (-np.log(0.1)-np.log(0.5))/2 ``` 1.4978661367769954 上面这种方式虽然简洁,但是可能不太好理解,下面介绍一种更直观的方式。首先我们要将y转换成`one-hot`编码。 ```python y_true = torch.tensor([0,1]) y_hat = torch.tensor([[0.1,0.2,0.7],[0.3,0.5,0.2]]) y_one_hot = torch.zeros_like(y_hat) y_one_hot.scatter_(1, y_true.unsqueeze(1), 1) y_one_hot ``` tensor([[1., 0., 0.], [0., 1., 0.]]) 可以看出此时的y_one_hot和y_hat维度相同,并且y_one_hot对应类上的元素是1,其余元素为0,此时再根据公式计算交叉熵即可 $$ -\frac{1}{2}(1\times log(0.1)+0\times log(0.2)+0\times log(0.7) +0 \times log(0.2) +1\times log(0.5)+0\times log(0.3) $$ ```python cost = (y_one_hot * -torch.log(y_hat)).sum(dim=1).mean() cost ``` tensor(1.4979) 可以看出两种方法得到的结果一致 ```python def opt(W,b): return optim.SGD([W,b],lr=0.1) ``` # 🍐5.训练模型 ```python ''' 初始化参数 ''' W = torch.zeros((784, 10), requires_grad=True) b = torch.zeros(10, requires_grad=True) ''' 定义SGD优化器 ''' optimizer = optim.SGD([W, b], lr=0.1) ''' 训练模型 ''' nb_epochs = 1000 for epoch in range(nb_epochs + 1): z = net(X)#计算softmax回归结果 cost = cross_entropy(z,y)#计算损失函数 # SGD求解参数 optimizer.zero_grad()#初始化参数 cost.mean().backward()#后向传播求参数 optimizer.step()#更新参数 if epoch % 100 == 0 : print('Epoch {:4d}/{} Cost: {:.6f}'.format( epoch, nb_epochs, cost.mean().item() )) ``` Epoch 0/1000 Cost: 2.302585 Epoch 100/1000 Cost: 0.055274 Epoch 200/1000 Cost: 0.026265 Epoch 300/1000 Cost: 0.017182 Epoch 400/1000 Cost: 0.012762 Epoch 500/1000 Cost: 0.010150 Epoch 600/1000 Cost: 0.008425 Epoch 700/1000 Cost: 0.007202 Epoch 800/1000 Cost: 0.006290 Epoch 900/1000 Cost: 0.005582 Epoch 1000/1000 Cost: 0.005018 # 🍏6.模型预测 首先我们从测试集中随机抽取10个样本 ```python X_test, y_test = next(iter(data.DataLoader(test, batch_size=10))) show_images(X_test.reshape(10, 28, 28), 2, 5) ``` array([, , , , , , , , , ], dtype=object) ![png](https://ucc.alicdn.com/images/user-upload-01/img_convert/dfad5e7c635a780847c79fd800a4bf56.png#pic_center) 测试集拿到的十个数字为`7,2,1,0,4,1,4,9,5,9`下面我们用刚刚训练好的模型来预测,看看结果如何 ```python z = net(X_test) predict = z.argmax(dim=1) predict ``` tensor([7, 3, 1, 0, 4, 1, 4, 1, 4, 7]) 可以看出预测的结果有六个正确,四个错误,模型效果一般。因为我们刚刚只使用了训练集中的25个样本,所以在训练集上预测效果并不好。如何提升预测精度问题将在后续讨论。 # 🍎7.使用内置api简单实现softmax回归 上面我们演示了如何从0到1实现`softmax`回归,在`pytorch`中,有内置的api可以直接帮我们更简洁的实现,具体代码如下 ```python from torch import nn # 一样导入数据集 X, y = next(iter(data.DataLoader(train, batch_size=25))) # 定义模型 net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))#nn.Flatten()的作用是将输入的特征转换为一个向量 def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01)#初始化参数 net.apply(init_weights) #计算损失函数 loss = nn.CrossEntropyLoss(reduction='none') # 定义SGD优化器 trainer = torch.optim.SGD(net.parameters(), lr=0.1) nb_epochs = 1000 for epoch in range(nb_epochs + 1): z = net(X)#计算模型结果 cost = loss(z,y)#计算损失函数 # SGD求解参数 trainer.zero_grad()#初始化参数 cost.mean().backward()#后向传播求参数 trainer.step()#更新参数 if epoch % 100 == 0 : print('Epoch {:4d}/{} Cost: {:.6f}'.format( epoch, nb_epochs, cost.mean().item() )) ``` Epoch 0/1000 Cost: 2.318002 Epoch 100/1000 Cost: 0.062154 Epoch 200/1000 Cost: 0.028716 Epoch 300/1000 Cost: 0.018596 Epoch 400/1000 Cost: 0.013739 Epoch 500/1000 Cost: 0.010891 Epoch 600/1000 Cost: 0.009021 Epoch 700/1000 Cost: 0.007699 Epoch 800/1000 Cost: 0.006715 Epoch 900/1000 Cost: 0.005955 Epoch 1000/1000 Cost: 0.005349 本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!! |