【CNN时序预测】基于混合卷积神经网络和循环神经网络 CNN - RNN 实现时间序列预测附Matlab代码

简介: 【CNN时序预测】基于混合卷积神经网络和循环神经网络 CNN - RNN 实现时间序列预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于卷积循环神经网络的有杆泵工况预警方法,具有如下步骤:有杆泵渐变型工况图集进行预处理后,将预处理后的工况图集输入卷积神经网络CNN进行训练;CNN输出得到目标工况图集所对应的特征序列;训练循环神经网络RNN,提取特征序列的深度特征,建立渐变型工况图集的特征模板,对有杆泵故障进行判断.本发明采用卷积循环神经网络,在传统的通过示功体判断有杆泵工况方法中加入时间因素,用以判别与时间序列有关的信息,对于发生渐变型故障的油井,在先期就提出预警,通知现场工作人员及时进行处理,节约资源,实现经济高效的生产.同时,学习与更新后卷积循环神经网络随着使用的过程越来越智能,效果越来越好.

⛄ 部分代码

function lgraph = resnet50(inputSize,numResponses)

%% RESNET50 Create Deep Learning Network Architecture

% Script for creating the layers for a deep learning network with the following

% properties:


% Generate MATLAB Code From Deep Network Designer>.

%

% Auto-generated by MATLAB on 27-Apr-2021 09:05:58

%% Create Layer Graph

% Create the layer graph variable to contain the network layers.

lgraph = layerGraph();

%% Add Layer Branches

% Add the branches of the network to the layer graph. Each branch is a linear

% array of layers.

tempLayers = [

   % change the first input layer and procee for the folding layer

   sequenceInputLayer([inputSize 1 1],"Name","input")

   sequenceFoldingLayer("Name","fold")];

lgraph = addLayers(lgraph,tempLayers);

% generic resnet50

tempLayers = [

   convolution2dLayer([5 5],64,"Name","conv1","Padding","same","Stride",[2 2])

   batchNormalizationLayer("Name","bn_conv1","Epsilon",0.001)

   reluLayer("Name","activation_1_relu")

   maxPooling2dLayer([3 3],"Name","max_pooling2d_1","Padding",[1 1 1 1],"Stride",[2 2])];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],256,"Name","res2a_branch1","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn2a_branch1","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],64,"Name","res2a_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn2a_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_2_relu")

   convolution2dLayer([3 3],64,"Name","res2a_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn2a_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_3_relu")

   convolution2dLayer([1 1],256,"Name","res2a_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn2a_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_1")

   reluLayer("Name","activation_4_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],64,"Name","res2b_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn2b_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_5_relu")

   convolution2dLayer([3 3],64,"Name","res2b_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn2b_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_6_relu")

   convolution2dLayer([1 1],256,"Name","res2b_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn2b_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_2")

   reluLayer("Name","activation_7_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],64,"Name","res2c_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn2c_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_8_relu")

   convolution2dLayer([3 3],64,"Name","res2c_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn2c_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_9_relu")

   convolution2dLayer([1 1],256,"Name","res2c_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn2c_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_3")

   reluLayer("Name","activation_10_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],128,"Name","res3a_branch2a","BiasLearnRateFactor",0,"Stride",[2 2])

   batchNormalizationLayer("Name","bn3a_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_11_relu")

   convolution2dLayer([3 3],128,"Name","res3a_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn3a_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_12_relu")

   convolution2dLayer([1 1],512,"Name","res3a_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn3a_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],512,"Name","res3a_branch1","BiasLearnRateFactor",0,"Stride",[2 2])

   batchNormalizationLayer("Name","bn3a_branch1","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_4")

   reluLayer("Name","activation_13_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],128,"Name","res3b_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn3b_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_14_relu")

   convolution2dLayer([3 3],128,"Name","res3b_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn3b_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_15_relu")

   convolution2dLayer([1 1],512,"Name","res3b_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn3b_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_5")

   reluLayer("Name","activation_16_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],128,"Name","res3c_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn3c_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_17_relu")

   convolution2dLayer([3 3],128,"Name","res3c_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn3c_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_18_relu")

   convolution2dLayer([1 1],512,"Name","res3c_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn3c_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_6")

   reluLayer("Name","activation_19_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],128,"Name","res3d_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn3d_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_20_relu")

   convolution2dLayer([3 3],128,"Name","res3d_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn3d_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_21_relu")

   convolution2dLayer([1 1],512,"Name","res3d_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn3d_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_7")

   reluLayer("Name","activation_22_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],1024,"Name","res4a_branch1","BiasLearnRateFactor",0,"Stride",[2 2])

   batchNormalizationLayer("Name","bn4a_branch1","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],256,"Name","res4a_branch2a","BiasLearnRateFactor",0,"Stride",[2 2])

   batchNormalizationLayer("Name","bn4a_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_23_relu")

   convolution2dLayer([3 3],256,"Name","res4a_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn4a_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_24_relu")

   convolution2dLayer([1 1],1024,"Name","res4a_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4a_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_8")

   reluLayer("Name","activation_25_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],256,"Name","res4b_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4b_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_26_relu")

   convolution2dLayer([3 3],256,"Name","res4b_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn4b_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_27_relu")

   convolution2dLayer([1 1],1024,"Name","res4b_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4b_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_9")

   reluLayer("Name","activation_28_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],256,"Name","res4c_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4c_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_29_relu")

   convolution2dLayer([3 3],256,"Name","res4c_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn4c_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_30_relu")

   convolution2dLayer([1 1],1024,"Name","res4c_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4c_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_10")

   reluLayer("Name","activation_31_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],256,"Name","res4d_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4d_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_32_relu")

   convolution2dLayer([3 3],256,"Name","res4d_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn4d_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_33_relu")

   convolution2dLayer([1 1],1024,"Name","res4d_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4d_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_11")

   reluLayer("Name","activation_34_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],256,"Name","res4e_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4e_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_35_relu")

   convolution2dLayer([3 3],256,"Name","res4e_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn4e_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_36_relu")

   convolution2dLayer([1 1],1024,"Name","res4e_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4e_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_12")

   reluLayer("Name","activation_37_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],256,"Name","res4f_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4f_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_38_relu")

   convolution2dLayer([3 3],256,"Name","res4f_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn4f_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_39_relu")

   convolution2dLayer([1 1],1024,"Name","res4f_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn4f_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_13")

   reluLayer("Name","activation_40_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],2048,"Name","res5a_branch1","BiasLearnRateFactor",0,"Stride",[2 2])

   batchNormalizationLayer("Name","bn5a_branch1","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],512,"Name","res5a_branch2a","BiasLearnRateFactor",0,"Stride",[2 2])

   batchNormalizationLayer("Name","bn5a_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_41_relu")

   convolution2dLayer([3 3],512,"Name","res5a_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn5a_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_42_relu")

   convolution2dLayer([1 1],2048,"Name","res5a_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn5a_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_14")

   reluLayer("Name","activation_43_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],512,"Name","res5b_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn5b_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_44_relu")

   convolution2dLayer([3 3],512,"Name","res5b_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn5b_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_45_relu")

   convolution2dLayer([1 1],2048,"Name","res5b_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn5b_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_15")

   reluLayer("Name","activation_46_relu")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   convolution2dLayer([1 1],512,"Name","res5c_branch2a","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn5c_branch2a","Epsilon",0.001)

   reluLayer("Name","activation_47_relu")

   convolution2dLayer([3 3],512,"Name","res5c_branch2b","BiasLearnRateFactor",0,"Padding","same")

   batchNormalizationLayer("Name","bn5c_branch2b","Epsilon",0.001)

   reluLayer("Name","activation_48_relu")

   convolution2dLayer([1 1],2048,"Name","res5c_branch2c","BiasLearnRateFactor",0)

   batchNormalizationLayer("Name","bn5c_branch2c","Epsilon",0.001)];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   additionLayer(2,"Name","add_16")

   reluLayer("Name","activation_49_relu")

   globalAveragePooling2dLayer("Name","avg_pool")];

lgraph = addLayers(lgraph,tempLayers);

tempLayers = [

   % unfold here and the flatten

   sequenceUnfoldingLayer("Name","sequnfold")

   flattenLayer("Name","flatten")

   

   

   % from here the RNN design. Feel free to add or remove layers

   gruLayer(128,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')

   lstmLayer(64,'Name','gru2','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')

   dropoutLayer(0.25,'Name','drop2')

   % this last part you must change the outputmode to last

   lstmLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')

   dropoutLayer(0.25,'Name','drop3')

   % here finish the RNN design

   

   

   fullyConnectedLayer(numResponses,"Name","fc")

   regressionLayer("Name","regressionoutput")];

lgraph = addLayers(lgraph,tempLayers);

% clean up helper variable

clear tempLayers;

%% Connect Layer Branches

% Connect all the branches of the network to create the network graph.

lgraph = connectLayers(lgraph,"fold/out","conv1");

lgraph = connectLayers(lgraph,"fold/miniBatchSize","sequnfold/miniBatchSize");

lgraph = connectLayers(lgraph,"max_pooling2d_1","res2a_branch1");

lgraph = connectLayers(lgraph,"max_pooling2d_1","res2a_branch2a");

lgraph = connectLayers(lgraph,"bn2a_branch1","add_1/in2");

lgraph = connectLayers(lgraph,"bn2a_branch2c","add_1/in1");

lgraph = connectLayers(lgraph,"activation_4_relu","res2b_branch2a");

lgraph = connectLayers(lgraph,"activation_4_relu","add_2/in2");

lgraph = connectLayers(lgraph,"bn2b_branch2c","add_2/in1");

lgraph = connectLayers(lgraph,"activation_7_relu","res2c_branch2a");

lgraph = connectLayers(lgraph,"activation_7_relu","add_3/in2");

lgraph = connectLayers(lgraph,"bn2c_branch2c","add_3/in1");

lgraph = connectLayers(lgraph,"activation_10_relu","res3a_branch2a");

lgraph = connectLayers(lgraph,"activation_10_relu","res3a_branch1");

lgraph = connectLayers(lgraph,"bn3a_branch2c","add_4/in1");

lgraph = connectLayers(lgraph,"bn3a_branch1","add_4/in2");

lgraph = connectLayers(lgraph,"activation_13_relu","res3b_branch2a");

lgraph = connectLayers(lgraph,"activation_13_relu","add_5/in2");

lgraph = connectLayers(lgraph,"bn3b_branch2c","add_5/in1");

lgraph = connectLayers(lgraph,"activation_16_relu","res3c_branch2a");

lgraph = connectLayers(lgraph,"activation_16_relu","add_6/in2");

lgraph = connectLayers(lgraph,"bn3c_branch2c","add_6/in1");

lgraph = connectLayers(lgraph,"activation_19_relu","res3d_branch2a");

lgraph = connectLayers(lgraph,"activation_19_relu","add_7/in2");

lgraph = connectLayers(lgraph,"bn3d_branch2c","add_7/in1");

lgraph = connectLayers(lgraph,"activation_22_relu","res4a_branch1");

lgraph = connectLayers(lgraph,"activation_22_relu","res4a_branch2a");

lgraph = connectLayers(lgraph,"bn4a_branch1","add_8/in2");

lgraph = connectLayers(lgraph,"bn4a_branch2c","add_8/in1");

lgraph = connectLayers(lgraph,"activation_25_relu","res4b_branch2a");

lgraph = connectLayers(lgraph,"activation_25_relu","add_9/in2");

lgraph = connectLayers(lgraph,"bn4b_branch2c","add_9/in1");

lgraph = connectLayers(lgraph,"activation_28_relu","res4c_branch2a");

lgraph = connectLayers(lgraph,"activation_28_relu","add_10/in2");

lgraph = connectLayers(lgraph,"bn4c_branch2c","add_10/in1");

lgraph = connectLayers(lgraph,"activation_31_relu","res4d_branch2a");

lgraph = connectLayers(lgraph,"activation_31_relu","add_11/in2");

lgraph = connectLayers(lgraph,"bn4d_branch2c","add_11/in1");

lgraph = connectLayers(lgraph,"activation_34_relu","res4e_branch2a");

lgraph = connectLayers(lgraph,"activation_34_relu","add_12/in2");

lgraph = connectLayers(lgraph,"bn4e_branch2c","add_12/in1");

lgraph = connectLayers(lgraph,"activation_37_relu","res4f_branch2a");

lgraph = connectLayers(lgraph,"activation_37_relu","add_13/in2");

lgraph = connectLayers(lgraph,"bn4f_branch2c","add_13/in1");

lgraph = connectLayers(lgraph,"activation_40_relu","res5a_branch1");

lgraph = connectLayers(lgraph,"activation_40_relu","res5a_branch2a");

lgraph = connectLayers(lgraph,"bn5a_branch2c","add_14/in1");

lgraph = connectLayers(lgraph,"bn5a_branch1","add_14/in2");

lgraph = connectLayers(lgraph,"activation_43_relu","res5b_branch2a");

lgraph = connectLayers(lgraph,"activation_43_relu","add_15/in2");

lgraph = connectLayers(lgraph,"bn5b_branch2c","add_15/in1");

lgraph = connectLayers(lgraph,"activation_46_relu","res5c_branch2a");

lgraph = connectLayers(lgraph,"activation_46_relu","add_16/in2");

lgraph = connectLayers(lgraph,"bn5c_branch2c","add_16/in1");

lgraph = connectLayers(lgraph,"avg_pool","sequnfold/in");

%% Plot Layers

% plot(lgraph);

⛄ 运行结果

⛄ 参考文献

[1]周克强, 王浩竣. 基于卷积神经网络和循环神经网络的源代码漏洞挖掘研究[J]. 数码设计(下), 2019.

[2]谢子凡, 陈志, 岳文静,等. 基于卷积神经网络和循环神经网络的人体行为识别方法:, CN110321833A[P]. 2019.

[3]赫晓慧罗浩田乔梦佳田智慧周广胜. 基于CNN-RNN网络的中国冬小麦估产[J]. 农业工程学报, 2021, 37(17):124-132.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
49 31
|
22天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
12天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
79 7
|
1月前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
29天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
下一篇
DataWorks