✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
伴随智能电网的建设和清洁能源的开发利用,配电网中的负荷类型呈现多元化发展,分布式电源、可控负荷、储能等资源的增加让单向潮流的传统配电网逐渐向双向潮流的主动配电网结构转变。在能源结构转变的同时,清洁能源自身的随机性和波动性给配电网带来了更大的调峰压力,电力系统的安全稳定运行面临巨大的挑战。综合利用配电网内部的主动负荷资源参与优化调度,对提高电力系统供电可靠性和推进清洁能源发展有重要意义。本文旨在建立一种综合考虑主动配电网内部“源”、“荷”、“储”各类发用电资源的优化调度模型,降低配电网调度压力,提高能源利用率,增加清洁能源的消纳水平,并通过典型算例验证其可行性。首先,对主动配电网的架构和关键技术进行了介绍,并对主动配电网内部的分布式电源、需求侧负荷资源以及储能设备的发用电结构和特性进行研究分析。结合可控负荷与储能资源的响应策略、约束、成本等分别建立响应模型,提出了“源-荷-储”协同互动的两阶段优化调度策略。其次,建立了主动配电网优化调度模型,以配电网运行可靠性和经济性最优为目标函数,考虑了网络平衡约束、分布式电源功率约束、用户用电满意度约束以及储能系统的充放电功率约束等作为约束条件。在粒子群算法基础上采用理想点法求解多目标优化问题。最后,用IEEE-33节点系统作为算例,验证了优化调度模型与算法的可行性和正确性。通过与单一控制策略:“源-荷”协同响应、“源-储”协同响应优化结果进行对比分析,综合考虑“源-荷-储”协同响应的控制策略能更充分的利用配电网中各类资源,优化效果最好。参与优化调度的储能系统充放电切换频繁,增加了储能资源调用成本,提出了双储能运行策略,在原储能系统的出力计划不变的前提下,可大幅减少储能系统充放循环次数,延长系统使用寿命,并有效提高配电网优化调度的经济性。
⛄ 部分代码
%% 参数
% 风光热电
Ppv = [0, 0, 0, 0, 0, 0, 2.52, 10.08, 16.38, 25.2, 28.98, 30.24, 28.98, 26.46, 21.42, 16.38, 11.34, 2.52, 0 , 0, 0, 0, 0, 0];
Pwt = [32.76, 37.8, 41.57, 39.06, 35.28, 15.12, 17.64, 21.42, 25.2, 15.12, 7.56, 11.34, 6.3, 5.04, 17.64, 21.42, 34.02, 34.02, 22.68, 18.9, 20.16, 20.16, 30.24, 39.06];
Phe = [128.5, 132.28, 139.84, 129.76, 134.8, 127.24, 123.47, 119.69, 119.69, 112.13, 100.79, 89.45, 79.37, 66.77, 76.85, 85.67, 104.57, 114.65, 127.24, 146.14, 141.1, 134.8, 131.02, 129.76];
Pl = [62.99, 57.95, 55.43, 51.65, 50.39, 62.99, 81.89, 97.01, 117.17, 127.24, 123.47, 108.35, 99.53, 93.23, 97.01, 109.61, 118.4, 122.21, 129.76, 136.06, 125.98, 105.83, 89.45, 66.77];
Cm_pv = 0.0235;
Cm_wt = 0.0196;
% 电网买卖电价
Crb = [0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.49, 0.49, 0.49, 0.83, 0.83, 0.83, 0.83, 0.83, 0.49, 0.49, 0.49, 0.83, 0.83, 0.83, 0.49, 0.49, 0.17];
Crs = [0.13, 0.13, 0.13, 0.13, 0.13, 0.13, 0.13, 0.38, 0.38, 0.38, 0.65, 0.65, 0.65, 0.65, 0.65, 0.38, 0.38, 0.38, 0.65, 0.65, 0.65, 0.38, 0.38, 0.13];
Pgrid_min = -60;
Pgrid_max = 60;
% 燃气轮机
Pmt_min = 15;
Pmt_max = 65;
Rmt_down = -5;
Rmt_up = 10;
Cm_mt = 0.025;
eta_l = 0.15;
eta_h = 0.9;
Coph = 1.2;
eta_mt = [0.281511485,0.279660704,0.274107223,0.281714324,0.285366323,0.282392617,0.278652065,0.273527594,0.265437288,0.263784876,0.253341649,0.240684731,0.225559863,0.219695875,0.23198922,0.233347706,0.236346234,0.259440614,0.273964246,0.283534984,0.278375758,0.271587717,0.262965241,0.252302695];
Cst_mt = 1.94;
% 电锅炉
Peb_min = 0;
Peb_max = 50;
Reb_down = -3;
Reb_up = 5;
eta_ah = 0.85; %热电转换效率
Cm_eb = 0.016;
Cst_eb = 2.74;
% 燃料电池
Pfc_min = 5;
Pfc_max = 40;
Rfc_down = -2;
Rfc_up = 2;
Cm_fc = 0.026;
eta_fc = [0.633102762,0.630810014,0.626210435,0.622515243,0.619496279,0.615849659,0.614475289,0.609895576,0.606003752,0.602201083,0.599696666,0.595793234,0.595413236,0.593021958,0.595233072,0.599833088,0.604433107,0.60902944,0.613626799,0.618226815,0.62282674,0.627426773,0.632026849,0.636626883];
Cst_fc = 1.2;
% 电储能
tau_b = 0.001;
eta_bch = 0.9;
eta_bdis = 0.9;
Eb_init = 30;
Eb_min = 0.2*150;
Eb_max = 0.8*150;
Cm_Eb = 0.0018;
Pbch_min=0; % 电储能充电
Pbch_max=37.5;
Pbdis_min=0; % 电储能放电
Pbdis_max=37.5;
% 热储能
tau_h = 0.01;
eta_hch = 0.9;
eta_hdis = 0.9;
Eh_init = 0.2*100;
Eh_min = 0.1*100;
Eh_max = 0.8*100;
Cm_Eh = 0.0016;
Phch_min=0; % 热储能储热
Phch_max=25;
Phdis_min=0; % 热储能放热
Phdis_max=25;
% 单价系数
Cgas = 2.5;
L_gas = 9.7;
Uinit = 0;
Che = 0.1; % 制热收益系数
⛄ 运行结果
⛄ 参考文献
[1]诸晓骏. 考虑电动汽车有序充电的主动配电网源网荷优化调度研究[D]. 东南大学, 2016.
[2]邢海军, 洪绍云, 范宏,等. 面向"源-网-荷-储"的主动配电网优化重构及协调调度研究[J]. 电力建设, 2018, 39(8):6.