浅析分布式ID生成算法(UUID、Snowflake、Leaf)

简介: 浅析分布式ID生成算法(UUID、Snowflake、Leaf)

一、雪花算法



1、雪花算法简介

     

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上是保持自增的。

       

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。


2、雪花算法生成ID的结构

9e3a38cbbc7a43af97b109aa975a142c.png

1、1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。


2、41bit-时间戳,用来记录时间戳,毫秒级。

- 41位可以表示 (2^41-1) 个数字,

- 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 2^41-1 ,减1是因为可表示的数值范围是从0开始算的,而不是1。

- 也就是说41位可以表示 2^41-1 个毫秒的值,转化成单位年则是69年


3、10bit-工作机器id,用来记录工作机器id。

 - 可以部署在 2^10=1024 个节点,包括5位datacenterId和5位workerId

- 5位(bit)可以表示的最大正整数是 2^5-1=31 ,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId


4、12bit-序列号,序列号,用来记录同毫秒内产生的不同id。

- 12位(bit)可以表示的最大正整数是 2^12-1=4095 ,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。


3、雪花算法能够保证


(1)所有生成的id按时间趋势递增


(2)整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)


4、雪花算法优缺点


优点:


(1)高性能高可用:生成时不依赖于数据库,完全在内存中生成。

(2)容量大:每秒中能生成数百万的自增ID。

(3)ID自增:存入数据库中,索引效率高。


缺点:


(1)依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。

(2)不一定是全局递增的


5、雪花算法的优化——时钟回拨问题

     

保存过去一段时间内每一台机器在当前这一毫秒产生的ID的最大值,比如使用Map形式,就是<machine_id,max_id>,这样如果某台机器发生了时钟回拨,直接在这台机器对应的max_id的基础上继续自增生成ID即可。


6、源码


参考:雪花算法的原理和实现Java_雨夜青草的博客-CSDN博客_雪花算法


二、UUID



1、UUID简介


UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:550e8400-e29b-41d4-a716-446655440000,到目前为止业界一共有5种方式生成UUID,详情见IETF发布的UUID规范 A Universally Unique IDentifier (UUID) URN Namespace。  


2、UUID的优缺点


优点:    

(1)性能非常高:本地生成,没有网络消耗。

     

缺点:

(1)不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用;

(2)信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。

(3)ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用:


1、MySQL官方有明确的建议主键要尽量越短越好[4],36个字符长度的UUID不符合要求。 4c22322ea27f47c4b3178032a98ae18d.png


2、对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。


三、Leaf




参考:Leaf——美团点评分布式ID生成系统 - 美团技术团队

       9种分布式ID生成之美团(Leaf)实战_程序员内点事-CSDN博客_leaf 美团


相关:一口气说出 9种 分布式ID生成方式,面试官有点懵了


相关文章
|
2月前
|
算法 关系型数据库 MySQL
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
在分布式系统中,确保每个节点生成的 ID 唯一且高效至关重要。Snowflake 算法由 Twitter 开发,通过 64 位 long 型数字生成全局唯一 ID,包括 1 位标识位、41 位时间戳、10 位机器 ID 和 12 位序列号。该算法具备全局唯一性、递增性、高可用性和高性能,适用于高并发场景,如电商促销时的大量订单生成。本文介绍了使用 Go 语言的 `bwmarrin/snowflake` 和 `sony/sonyflake` 库实现 Snowflake 算法的方法。
94 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
|
1月前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
52 1
|
2月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
86 8
|
2月前
|
存储 算法 安全
SnowflakeIdGenerator-雪花算法id生成方法
SnowflakeIdGenerator-雪花算法id生成方法
41 1
|
2月前
|
算法
雪花算法反思:订单ID生成的痛点与解决方案
雪花算法(Snowflake Algorithm)因其生成唯一ID的能力而被广泛应用于分布式系统中。然而,随着业务的发展和系统规模的扩大,一些隐藏的问题逐渐浮现。本文将探讨使用雪花算法生成订单ID后可能遇到的挑战,并提供相应的解决方案。
102 2
|
2月前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
2月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
2天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
11天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章