机器学习课后题——线性回归模型

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 机器学习课后题——线性回归模型

第5章 线性回归模型


5.1 试分析在什么情况下,式fx=wTx+b 不必考虑偏置项b。


答:我的看法是,如果样本 x  中有某一个属性 xi  为固定值时,wixi+b 等价于偏置项。


即此时  wixi+b  与 b  等价,不必考虑偏置项b。


5.2为研究某化学反应过程中,温度x对产品得率y的影响,测得数据如下:


温度(℃) 100  110  120  130  140  150  160  170  180  190


得率(%)   45    51  54   61   66    70   74   78   85   89


根据上述实验数据,建立一元线性回归方程。当温度为200℃时,得率是多少。


解:首先计算相关系数:


rxy=xi-xyi-yxi-x2⋅yi-y2=0.998


可知y与x高度相关,可以使用回归模型:


设一元回归模型为:


y=wx+b


则:


w=10×101570-1450×67310×218500-14502=0.483


b=67310-0.483×145010=-2.735


所以,回归方程为:


y=0.483x-2.735


带入,x=200 ,得y=93.865


5.3 梯度下降法找到的一定是下降最快的方向么?


答: 不一定是,梯度下降只是‘局部最优下降’,梯度下降法并不是下降最快的方向,它只是目标函数在当前的点的高维切平面上下降最快的方向。


5.4 判断下列说法是否正确,并说明理由。


(1)逻辑回归是监督机器学习的算法.


答:正确


逻辑回归(Logistic Regression,LR)是一种广义的线性回归分析模型, 它使用了真值对数据进行训练,需要打标数据,所以应该属于监督学习算法。


(2)逻辑回归主要用来做回归。


答:错误


逻辑回归可以用在回归、二分类和多分类等问题上,主要用来处理分类问题。


(3)在训练逻辑回归模型之前,对特征进行标准化是必须的。


   答:错误


特征标准化的主要目的是实现模型的最优化,并不是必要过程。

目录
打赏
0
0
0
0
8
分享
相关文章
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
113 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
307 13
机器学习算法的优化与改进:提升模型性能的策略与方法
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
103 20
全网首发 | PAI Model Gallery一键部署阶跃星辰Step-Video-T2V、Step-Audio-Chat模型
Step-Video-T2V 是一个最先进的 (SoTA) 文本转视频预训练模型,具有 300 亿个参数,能够生成高达 204 帧的视频;Step-Audio 则是行业内首个产品级的开源语音交互模型,通过结合 130B 参数的大语言模型,语音识别模型与语音合成模型,实现了端到端的文本、语音对话生成,能和用户自然地进行高质量对话。PAI Model Gallery 已支持阶跃星辰最新发布的 Step-Video-T2V 文生视频模型与 Step-Audio-Chat 大语言模型的一键部署,本文将详细介绍具体操作步骤。
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
93 6
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI