【故障诊断】基于BP神经网络的电机数据特征提取与故障诊断软件设计附matlab代码

简介: 【故障诊断】基于BP神经网络的电机数据特征提取与故障诊断软件设计附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

伴随我国经济发展突飞猛进,电气化的应用越来越广,异步电动机因其经济、安全、高效、低耗被广泛应用于工业生产的各个领域。电动机一旦发生故障不仅会损坏电机本身,还会影响整个工业生产环节,从而造成巨大的经济损失。因此,如何对电机加强保护,对电机故障诊断提出了更高要求。本文对人工神经网络的基本原理进行了研究。利用MATLAB软件,建立基于BP网络的故障诊断结构,根据故障样本数据对网络进行训练,从而实现了对电机的诊断。

⛄ 部分代码

clear all

close all

%%%%%%%%加载数据

addpath(genpath('../.'))


data=importdata('s9.txt');

data1=data(1:3000,:);


%%%%%%%%01--时域分析

%%%%%%%02频域分析--傅里叶变换

fs=1000;

y=data1;

figure

subplot(211);plot(y,'k');

title('原始数据','Fontname', '宋体');

subplot(212);

[y_f,y_ft,nfft]=hua_fft(y,fs,1);


plot(y_f,2*abs(y_ft(1:nfft/2))/length(y));%

% subplot(313);hua_fft(y,fs,1,0,250);

title('FFT-show')

%%%%%%%%%%%%%%%%%%%%%%%%%%%

x=y;

nfft=64;                     % FFT长度

X=fft(x,nfft);               % FFT分析

ff=(0:(nfft/2-1))*fs/nfft;   % 频率刻度

n2=1:nfft/2;                 % 正频率索引号

X_abs=abs(X(n2))*2/nfft;     % 正频率部分的幅值谱

fe=50;                       % 中心频率

D=10;                        % 细化倍数f

[y,freq]=exzfft_ma(x,fe,fs,nfft,D);  % 细化分析

% 作图

figure

subplot 311;

plot(x,'k');

xlabel('时间/s','Fontname', '宋体');

ylabel('幅值','Fontname', '宋体');

title('时间序列','Fontname', '宋体');

subplot 312; plot(ff,X_abs,'k');

xlabel('频率/Hz','Fontname', '宋体');

ylabel('幅值','Fontname', '宋体');

title('细化分析前频谱','Fontname', '宋体');

grid;

subplot 313;

plot(freq,abs(y),'k'); grid;

% set(gca, 'XTickMode', 'manual', 'XTick');

% set(gca, 'YTickMode', 'manual', 'YTick');

xlabel('频率/Hz','Fontname', '宋体');

ylabel('幅值','Fontname', '宋体');

title('细化分析的频谱','Fontname', '宋体');

set(gcf,'color','w');


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xn=data1;

ls=length(xn);

w_name='db6';

%对信号进行小波分解

[c,l]=wavedec(xn,5,w_name);%5层小波分解(层:尺度)

ca5=appcoef(c,l,w_name,5);% 提取一维小波变换低频系数(第五层的逼近系数)

cd5=detcoef(c,l,5);%提取一维小波变换高频系数 (细节系数)

cd4=detcoef(c,l,4);

cd3=detcoef(c,l,3);

cd2=detcoef(c,l,2);

cd1=detcoef(c,l,1);


%%%%%%%%%%%%%%%%%%%%%%%%%%%

% x=awgn(y1,SNR);

%消除噪声处理

x2=xn;%awgn(xn,2);

[thr,sorh,keepapp]=ddencmp('den','wv',x2);

s1=wdencmp('gbl',c,l,w_name,3,thr,sorh,keepapp);

figure;

subplot(211);

plot(xn,'k');

title('原始信号','Fontname', '宋体');


subplot(212);

plot(s1,'k');

title('小波去噪后的信号','Fontname', '宋体');

%%%%%%%%%%%%%%%%%%%%%%%%%%希尔伯特变换-------------

x=data1;

Emd_result = emd(x);%(x为要处理的信号)

[A,fa,tt] = hhspectrum(Emd_result);

[E2,ttt,ff] = toimage(A,fa);

% cemd_visu(x,1:length(x),Emd_result);

disp_hhs(E2);


⛄ 运行结果

⛄ 参考文献

[1]陈轶. 基于BP神经网络的模拟电路故障诊断[D]. 苏州大学.

[2]罗彩玉. 基于BP人工神经网络的电动机故障诊断[J]. 科技创业家, 2013(11):2.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
8月前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
8月前
|
算法 调度 SoC
电动汽车充放电V2G模型(Matlab代码)
电动汽车充放电V2G模型(Matlab代码)

热门文章

最新文章